Based on Ch 18.5 [Glad & Ljung]
Find the state feedback law
u = k(x)

which solves minimization problem

min, /tf(L(x, wdt + oty x(t7))
Jto
& = f(x(t), u(t))
ueU, th<t<ty
x(to) = x0, W(tr, x(tf)) =0
Assume that u* and x* solves this optimization problem.
Define V (¢o, xo) as the optimal return function

tr
Vito, w0) = [ (LG w)de+ oty ()
to
if we start in (o, x(to) = xo)
Remark: Need to satisfy ...
Assume that we for

> ¢ € [to,to + h] use any control u(z)
> t € [to + h,tf] use optimal control u(t)*

v Uiz uy

/ N/—T /\_/
. ! time | time
toto+h tr toto+h tr

The Optimization criterion becomes

to+h
[ @), u)dr + V(e + hostto + 1)

to

If optimal control from ¢y: V (2o, x(¢0)) =

to+h
V(to, x(to))g/t (L(x(r), w(r))dr + V (to + b x(to + 1))

Theorem: If the optimal return value V is differentiable it
satisfies

- =minea (5 fe) 1 L) @

Proof: The chain rule gives
iV(t x(t) =Vi+ Vof
dt ’ =Vt x
and from Eq.(1) gives
_ov < ov

87 = % (x’u) +L(x’y)

with equality for optimal control u*.

Eq.(2) is called the Hamilton-Jacobi equation (HJ) for a finite ¢
the Hamilton-Jacobi-Bellman equation (HJB) for ¢ = co.

Nonlinear Control

Lecture 7

» Optimal and inverse(!) optimal design
» Saturated control and feedforwarding

Property of V:
If V is differentiable along a solution x(t), then

D (e, 2(0) + L), u(0) 2 0 (1)

with equality for x* and u*.

which gives

V(to +hox(to + 1) = V(to, x(t0)) , 1
h h

to+h
/ (L(x(r), w(r))dr > 0

Jto

which in the limit A — 0% gives

d
2V (6 2(0) + L(x(8), u(t) > 0

Remarks: Severe restriction to assume V differentiable (e.g.,
bang-bang solutions for minimal time problems give "corners"
in V but results can be extended to this case as well.

» State feedback law oV
= k(t,x) = angmin,cq (5o Flo) + Lizy))

» Necessary conditions while Pontryagin gives sufficient.

Outline

» HJB

» Inverse optimal control

» Stabilization with Saturations

» Integrator forwarding

» Relations between the concepts
» Conclusions



Optimality
Two main alternatives

» Pontryagin’s Maximum Principle (Necessary cond)
» Hamilton-Jacobi-Bellman (Dyn prog.) (Sufficient cond)

Theorem (Optimality and Stability)
Suppose there exist a C-function V' (x) > 0 which satisfies the
Hamilton-Jacobi-Bellman equation

4

I(x) + L,V (x) — L, V(x)R L,V (x))T = 0 W
=0

such that the feedback control
w(x) = —g R L,V ()"

achieves asymptotic stability of the origin x = 0.

Then u*(x) is the optimal stabilizing control which minimizes
the cost (3).

5-min exercise:
Consider the system
i=x24u

and the cost functional

1% =/ (22 4+ u?)dt
0

What is the optimal stabilizing control?

HJB:
el L2
ox

2

ov = 222 + V4x + 422

O (6)

=2:24+2xV/x2 + 1

V(x)=gx3+§(x2+1)3/2+c, C = —2/3 so that V(0) =0 (7)

3

u*(x) = _Lov =—x2—xVx2+1

2 Ox

Remark: We have chosen the positive solution in (6) as
V(x)>0

Consider the system
%= f(x) +g(x)u
Find u = u* such that
(i) u achieves asymptotic stability of the origin x = 0

(i) w minimizes the cost functional

/0 " () + W R(x)u)dt @)

where [(x) > 0 and R(x) > 0Vx.

For a given optimal feedback u(x)* the value of V depends on
the initial state x(0): V' (x(0)) or simply V(x) (and start time
according to previous slides).

Example:
Linear system
% =Ax+ Bu

Cost Function

V:/ (xTcTCcx +uTRu)dt, R>0
0

Riccati-equation

PA+ APT —PBR7'BTP+CTC=0 (5)
If (A,B) controllable and (A,C) observable, then (5) has a
unique solution P = PT > 0 such that the optimal cost is

V = xTPx and
u*(x) = —R'BTPx

is the optimal stabilizing control

Remark: If (A,B) stabilizable and (A,C) detectable then P is
positive semi-definite.
Example (non-detectability in cost)

System

X=x4+u

14 =/ wldt
0

2P — P2 =0, P=0orP=2

Cost functional

Riccati-eq

Corresponding HJB

oV 1,8V, B

V=0orV =2x?



Inverse optimality

A stabilizing control law u(x) solves an inverse optimal problem
for the system
&= f(x) + g(x)u

if it can be written as
u(x) = —k(x)/2 = —%Ril(x)(LgV(x))T, R(x) >0
where V(x) > 0 and

V=L V+L,V=L;V— %Lng(x) <0

—_—
—I(x)

Then V (x) is the solution of the HJB-eqgn

I(x)+ L,V — i(LgV)R‘l(LgV)T —0

Damping Control / Jurdjevic-Quinn

Consider the system
x=f(x)+g(x)u
Assume that the drift part of the system is stable, i.e.,
i=f(x), f(0)=0

and that we know a function V'(x) such that LV < 0 for all x.
How to make it asymptotically stable (robustly)?

Connection to passivity:
The system

%= f(x) +9(x)u
y=(LyV)"(x)

is passive with V' (x) as storage function if L,V <0 as
V=L/V+LVu<yTu

The feedback law u = —ky guarantees GAS if the system is
ZSD (zero state detectable).

Note: May be a conservative choice as it does not fully exploit
the possibility to choose V (x) for the whole system (only

x = f(x)).

Feedforward systems

Particular form of cascaded systems

1991 A. Teel
... Sussman, Sontag, Yang
... Saberi, Lin

1996 Mazenc, Praly
1996 Sepulchre, Jankovic, Kokotovic

The underlying idea of formulating an inverse optimal problem
is to get some help to avoid non-robust cancellations and gain
some stability margins.

Example: Non-robust cancellation

Consider the system

i=ax> +u
and the control law
2

Up =—x"—x = X =—-x

However, if there is some small perturbation gain u = (1 + €)u,,
we get

% =—(1+ €)x — ex?
This system may has finite escape time solutions.

How does u* from previous example behave?

To add more damping to the system to render it asymptotically
stable the following suggestion was made by Jurdjevic-Quinn
(1978)

V=L;V+L,Vu<L,Vu

Choose
u=—x-(L,V)T

It also solves the global optimization problem for the cost
functional

V(x) = / () + 2uTw)de
0 K
for the state cost function

1) = =LV + 5 (LgV) (LgV)" 20

Systems with saturations of control signal

Problem: System runs in “open loop” when in saturation

» Anti-windup designs from FRT075

» Consider Lyapunov function candidates of type
V =log(1 + x?) (see Lecture 1)

» Saturated controls [Sussmann, Yang And Sontag]
» Cascaded saturations [Teel et al|

Strict-feedforward systems

%1 = %9 + f1(xe,x3,...,%,, 1)
X9 = x3 + fa(xs,...,%n,U)

Fne1 = X + [o1(%n,u)

Xpn=1Uu




Compare with e.g.
Strict-feedback systems

%1 = x2 + f1(x1)

% = x3 + fa(x1,%2)

Xn = xp + fn(xl,x2>~--xn—1) +u

Sussman and Yang (1991) :
There does not exist any (simple) saturated feedback-law which
stabilizes an integrator chain of order > 3 globally.

Teel’s idea:
using nested saturations

u=—0p(hn(x) +0n_1(hn_1(x) + -+ o1(h1(x))...)

Sketch of proof: (n=3, L; = M;)
Consider a state transformation y = T'x which transforms the
integrator chain into

y=Ay+ Bu

where

A=

(e e R )
S O =
O =

e
| —

The control law

u = —03(y3s + o2(y2 + 61(31)))
will give the closed loop system

y1=y2+y3 —03(y3+o2(y2 +01(y1)))
Y2 =3 —03(y3 + 02(y2 + 01(y1)))
y3 = —0o3(y3 + 02(y2 + 01(y1)))

Yo = y3 — (y3 + 02(y2 + 01(31)))
= —02(y2 + 01(31)))

Same kind of argument shows us that after finite time, the
closed loop will look like

y1=-5

Yo =—Y1—)2
Y3=—Y1—Y2— )3

i.e. after a finite time, the dynamics are exponentially stable
Remark:

Although we have found a globally stabilizing, bounded, control
law, u, the internal states may have huge overshoots !!

Strict-feedforward systems are, in general, not feedback
linearizable!

(i.e., neither exact linearization nor backstepping is applicable
for stabilization)

Restriction: Does not cover systems of the type

. 2
Xp = —Xp + ...

i.e. don’t have to worry about

finite escape-time

Definition: o is a linear saturation for (L, M) if
» o is continuous and nondecreasing
» o(s)=swhen|s| <L
> lo(s)| <M,VseR

Theorem (Teel):

For an integrator chain of any order and for any set {(L;, M;)}
where L; < M; and M; < 3L;,1, there exists {&;} for all linear
saturations {o;} such that the bounded control

U = —0p(hn (%) + Opot (hno1(x) + - + 61(h1(x)) ...)

results in global asymptotic stability for the closed loop system.

How does y3 evolve ?
Let V3 = y§ =

Vs = —2y303(y3 + 02(y2 + 01(31)))

AS |O'2()| <My < %Lg,
Vs < 0forall |ys| > L3

= |ys| will decrease.

In finite time |ys| will be < %Lg and o3 will now operate in the
linear region.
(Note: no finite escape for the other states.)

Integrator forwarding

strict-feedforward systems

%1 = x93 + f1(xg,%3,..., %n, U)
Xp_1=Xp + fnfl(xn’u)
Xn=1Uu

Due to the lack of feedback connections, solutions always
exists and are of the form

%, (8) = 2,(0) + '/0 u(s)ds
o1 (t) = 20-1(0) + /0 (xn(8) + fro1(xa(s), u(s)))ds



1. Begin with stabilizing the system %, = u,,
Useeg. V, =x2andu, = —x,
2. Augment the control law
unfl(xnfh xn) = un(xn) +Up-1
such that u,,_; stabilizes the cascade
Fno1 = %n + foo1(%n,u)
Xp = Upn—1

k. Augment the control law
up(Xe, Xp41) = Un(Xp11) + 0
such that u;, stabilizes the cascade
& = Xpg1 + fl...)
Xk+1 = Fpya(...,uz)

The cross-term can only be exactly evaluated for very simple
systems. In other cases it has to be numerically evaluated or
approximated by i.e. Taylor series

Can use a feedback passivation design for a system if

1. A relative degree condition satisfied
2. The system is weakly minimum phase

Backstepping is a recursive way of finding a relative degree one
output.

Integrator forwarding allows us to stabilize weakly
non-minimum phase systems.

Motivation: Simple example

Consider the following simple feedback system

{ij = [_03 ﬂ [ij + [_01} u=Ax+Bu (%)
y=[1 0x=Cx

u = sat(xz - (2 + sin?(t)))

How is the cascade (in step k) stabilized?

We have a cascade of one GAS/LES system and a ISS-system
with a linear growth-condition.

There exists a Lyapunov function for the (sub-) system

1 (o0]
V= Vit yif+ [ 00X )ds

It can be shown that Vj|.,——z,v, < 0 and finally u; minimizes a
cost functional of the form

J = /Ow(l(x) +u?)ds

Connection to Teel’s results:

To avoid computations of the integrals we can use nested
low-gain (saturated) control.

Also showed to be GAS/LES for the integrator chain, but
LAS/LES for the general strict-feedforward system.

(Compare with high-gain design in backstepping)

Conclusions

» Global/semiglobal stabilization of strict-feedforward system
( No exact linearization possible )

» Tracking results reported
» Relaxes weakly minimum phase-condition
» Integration forwarding - “necessary” to simplify controller

Example cont'd

» linear subsystem unstable
» input saturation = At best local stability.

Tools
Locally valid Quadratic Contraint (QC) (sector condition)

X1
xg| for some |xg| < c

OS(K2~x2—u)(u—K1~x2)=

G %) ()

[x1 X9 u}
(0 2) -1 u
K1 =1 Lower bound :
"linear feedback stability cond.’
u=Kkx2,k € (1,00)
Ko =3 Upper bound :

sector of nonlinearity



Preliminaries

State feedback Observer feedback
% =Ax+ Bu
% =Ax+ Bu = Ax + B¢(x) y=Cx
y=Cx % =A%+ Bu+ L(y— Cx)
u=¢(x) u=¢(2)

Asymptotically stable for state feedback u = ¢(x)
Re-write with error dynamics (e = % — x)
é=(A—LC)e
% =Ax+ B¢(x+e)+ LCe
u=9(%)




