Nonlinear Control and Servo Systems

Lecture 2

e Lyapunov theory contd.

¢ Storage function and dissipation

e Absolute stability

¢ The Kalman-Yakubovich-Popov lemma
o Circle Criterion

e Popov Criterion

Invariant Sets

Definition A set M is called invariant if for the system
&= f(x),

x(0) € M implies that x(t) € M forall ¢ > 0.

Example — saturated control

Krasovskii’s method

Exercise - 5 min (revisited)

Find a bounded control signal u = sat(v), which globally
stabilizes the system

X1 = X1%2

—
—_
~

Xo=Uu
u = sat (v(x1,x2))

Hint: Use the Lyapunov function candidate
Vo = In(1 + 2%) + ax?

for some appropriate value of «.

With this type of control law, we end up with
V=—q(x2) <0

for some ¢(-) which only depends on the state xs.

E = {x|q(x) =0}, i.e., E is the line xo = 0.

Can solutions stay on that line?

x9 = 0 only for also x; = 0 (insert control law and check) so the
solution curves will not stay on the line xo = 0 except for the
origin. Thus, the origin is the larges invariant set and
asymptotic stability follows from the invariant set theorem.

Consider
&= f(x), f(0)=0, f(x)#0,Vx#0
and

_of
A=

avaT<o] vero

thenuse V = f(x)T f(x) > 0, Vx # 0,

Ve fTEe TS
- fT{A+AT}f<0, Vi # 0
See more general case in [Khalil, Exercise 4.10 ]

Invariant Set Theorem

Theorem Let Q € R" be a bounded and closed set that is
invariant with respect to

x = f(x).
Let V : R" — R be a radially unbounded C* function such that
V(x) < 0forx € Q. Let E be the set of points in Q where
V(x) = 0. If M is the largest invariant set in E, then every
solution with x(0) € Q approaches M as t — oo (see proof in
textbook)

V(x)
% g

Common use is to try to show that the origin is the larges invariant set of E, (M = {0}).

Vo =In(1 + x2) + ax?/2
- xlo'cl

Vo=2
2 1+x%

+ 20(962562
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X1
2
1+ x7

= 2x9 +asat(v)

0<-<1
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Can use some part to cancel 71> and some to add bounded
negative damping in xo (like sign(x2) or sat(xg) or ...)

Invariant sets - nonautonomous systems

Problems with invariant sets for nonautonomous systems.

. oV oV
V= 5 + a—xf(t, x) depends both on ¢ and x.



Barbalat’s Lemma - nonautonomous systems

Let ¢ : R — IR be a uniformly continuous function on [0, o).
Suppose that

t—o00

g3

lim / o(t)dr
0

exists and is finite. Then

¢(t) >0 as t — o0

Common tool in adaptive control.
» V(¢,x) is lower bounded
» V(t,x) <0
» V(¢,x) uniformly cont. in time

then V(t,x) —» 0 as t — oo

Nonautonomous systems —-contd

[Khalil, Theorem 4.8 & 4.9]
Assume there exists V (¢, x) such that

Wi(x) < V(t,x) < Wa(x)
N—— ——
positive definite decrecent

V(t,x) = v + v

= O+ S f(6x) < ~Wa(x)

W3 is a continuous positive semi-definite function.

Solutions to & = f(¢,x) starting in x(¢9) € {x € B,|...} are
bounded and satisfy

Ws(x(t)) -0 t >

See example in Khalil.

Exercise - 5 min [Slotine]

Consider the system
X1 = x% + xg
Xg = —xg + x?

Use Chetaev’s theorem to show that the origin is an unstable
equilibrium point.

You may consider
V=x; —x2/2

for a certain region.

Example—Capacitor

A capacitor

. du
1= Ca
is dissipative with respect to the supply rate r(t) = i(¢)u(t).

A storage function is

In fact

Ul s [ sty = 4

to

Remark: In many adaptive control cases we have a Lyapunov
function candidate depending on states and parameter errors,
while the time-derivative of the candidate function only depends
on the states.

An instability result - Chetaev’s Theorem

Idea: show that a solution arbitrarily close to the origin have to
leave.

Let f(0) =0andlet V: D — R be a continuously differentiable
function on a neighborhood D of x = 0, such that V(0) = 0.
Suppose that the set

U = {xeD:|x]<r,V(x)>0}

is nonempty forevery r > 0. If V. > 0in U, thenx = 0 is
unstable.

o

Dissipativity

Consider a nonlinear system

{x(t) = f(x(@)u(®),t), t20
¥(&) = h(x(t)u()?)

and a locally integrable function
rt) = r(u(),y(),?).
The system is said to be dissipative with respect to the supply

rate r if there exists a storage function S(t, x) such that for all
to,t1 and inputs v on [to, ¢1]

S(to,x(to))—i-/tlr(t)dt > S(tnx(t) >0

to

Example—Inductance

An inductance

di
=L
YTt

is dissipative with respect to the supply rate r(t) = i(¢)u(t).
A storage function is

In fact

Li(to)z



Memoryless Nonlinearity

The memoryless nonlinearity w = ¢ (v, t) with sector condition
a<Pit)fv<p, VE>0,u#0

is dissipative with respect to the quadratic supply rate
rt) = —[w(t) - av(®)]w(t) - u(®)]

with storage function

S(x) = 0

Storage function as Lyapunov function

For a system without input, suppose that
r(y) < —klx|°
for some k& > 0. Then the dissipation inequality implies
ty
S (¢0,x(20)) —/ klx(t)|°dt > S(t1,x(t1))
to
which is an integrated form of the Lyapunov inequality

d
- < — c
ZS(t.x(6)) < —kla

Global Sector Condition

S

Let w(¢,5) € R be piecewise continuous in ¢ € [0,00) and
locally Lipschitz in y € R.

Assume that y satisfies the global sector condition

asy(ty))y<B, Vt>0,y#0 (2

The Circle Criterion

N
"

The system (3) with sector condition (2) is absolutely stable if
the origin is asymptotically stable for y(¢,y) = ay and the
Nyquist plot

C(joI —A)™'B+D, weR

does not intersect the closed disc with diameter [-1/a,—1/].

Linear System Dissipativity

The linear system
x(t) = Ax(t)+ Bu(t), t>0

is dissipative with respect to the supply rate

X T X
-] ]
u u
and storage function 27 Px if and only if

ATP+PA PB }

BTp o |20

M+ |

Interconnection of dissipative systems

If the two systems
%1 = fi(x1,u1) %2 = fa(x2,u3)

are dissipative with supply rates r1(u1,x1) and ra(ug, x2) and
storage functions S(x1), S(x2), then their interconnection

%1 = f1(x1, h2(x2))
%2 = fa(x2,h1(x1))

is dissipative with respect to every supply rate of the form
71r1(ha(x2), x1) + Targ(h1(x1), x2) 71,72 2 0
The corresponding supply rate is

7181(%1) + 7252 (x2)

Absolute Stability

u y

()—E(A,B,0)
—y(t,)
The system
x = Ax+Bu, t>0
y = Cx ()
u = —y(ty)

with sector condition (2) is called absolutely stable if the origin
is globally uniformly asymptotically stable for any nonlinearity w
satisfying (2).

Loop Transformation

G - 0O ew

v 97 K
o— K
B 2
o+

Common choices: K =a or K = —5



Special Case: Positivity

Proof

Let M (jw) = C(joI — A)~'B + D, where A is Hurwitz. The
system

X Ax+ Bu, t>0
y Cx+ Du
u = —y(y)

with sector condition

v(t,y)y = 0 Vt>0,y#0
is absolutely stable if

M(jo)+M(jo)* >0, Vo € [0,00)

Note: For SISO systems this means that the Nyquist curve lies
strictly in the right half plane.

The Kalman-Yakubovich-Popov Lemma

» Exists in numerous versions

» Idea: Frequency dependence is replaced by matrix
equations/inequalities or vice versa '

"Yakubovich in Lund: —"Yesterday, UIf told me that nowadays we mostly
use it the other way round!”

Compare Khalil (5.10-12):
M is strictly positive real if and only if 3P, W, L, ¢ :

PA+ATP PB-CT] _ [eP+LTL LW
BTP—-C D+DT|™ wirL  wWTw

Mini-version a la [ Slotine& Li ]:
% = Ax + bu, A Hurwitz, (i.e., Re{4;(A) < 0}]
y=cx

The following statements are equivalent

» Re{c(joI — A)~1b} > 0,Vw € [0, 0)
» There exist P = PT > 0and @ = QT > 0 such that

ATP+PA=—-@Q
Pb=cT

The K-Y-P Lemma, version Il - cont.

(i) @(jo) d(jo)+ P(jo) ®(jo) <Ofraleec R

with det(jwA — A) # 0.

(i) There exists a nonzero pair (p, P) € R x R**"
such that p > 0, P = P* and

A B[P 0 A B
C D 0 pI C D
‘TP 0][A B

{ 0 pI } { C D } <0
The corresponding equivalence for strict inequalities holds with
p=1

A B
C D

xTPx, P=PT>0

<
N
K
oy
I

2xT Pz
= 22"P[A B] [_’H <2x"P[A B] {_xw] +2py

= 2[x7 —y] [ﬁ ﬂ {_Ac —li)} [—xw}

By the Kalman-Yakubovich-Popov Lemma, the inequality
M (jo) + M (jw)* > 0 guarantees that P can be chosen to
make the upper bound for V strictly negative for all

(x,¥) # (0,0).

Stability by Lyapunov’s theorem.

I
<
Il

The K-Y-P Lemma, version |

Let M (jw) = C(jwI — A)~'B + D, where A is Hurwitz. Then
the following statements are equivalent.

() M@(jo)+M(jw)* > 0forallm € [0,00)

(i) 3P = PT > 0 such that

I A

The K-Y-P Lemma, version Il

For
[35]-[€]es-arm-ine [3]

with sA — A nonsingular for some s € C, the following two
statements are equivalent.

Some Notation Helps

Introduce
M=[A B], M=1]I 0],
N=[C D], N=[o0 I
Then
y = [C(joI —A)"'B + DJu
if and only if

b-1% ]

for some w € C"+™ satisfying Mw = joMuw.



Lemma 1

Given y,z € C", there exists an @ € [0,00) such that y = joz, if
and only if yz* + zy* = 0.

Proof Necessity is obvious. For sufficiency, assume that
yz* +zy* = 0. Then

' (v +2)P = 'y —2)F = 20"(yz" + 2y o =0.

Hence y = Az for some A € C U {c0}. The equality
yz* + zy* = 0 gives that 4 is purely imaginary.

(i) and (ii) can be connected by the following sequence of
equivalent statements.

(a) w*(N*N + N*N)w < 0 for w # 0 satisfying

Mw = joMw with @ € R.
(b) ®NP =, where

0=
{(w*(N*N +N*N)w, Muww* M* + Mww*M*) :
ww = 1}

P={(r,0): r>0}

(c) (conv®)NP=0.

(d) There exists a hyperplane in R x R"*" separating
® from P, i.e. 3P such that Vw # 0

0 > w (KJ*N+N*N+M*P}\7+M*PM)LU

The Popov Criterion

pu

oImG(iw)

y(v)

Bl

Suppose that ¥ : R — R is Lipschitzand 0 < w(v) /v < B. Let
G(iw) = C(iwI — A)~!B with A Hurwitz and (A,B,C) minimal.
If there exists n € R such that

Re [(1 + ion)G(i®)] > —% weR @)

then the differential equation x(t) = Ax(t) — By (Cx(t)) is
exponentially stable.

Popov proof i

Forn >0, V > 0 is obvious for x # 0.

Stability for linear y gives V. — 0 and V < 0, so V must be
positive also for n < 0.

Stability for nonlinear y from Lyapunov’s theorem.

Proof of the K-Y-P Lemma

See handout (Rantzer)

Time-invariant Nonlinearity

Let y(y) € R be locally Lipschitz in y € R.

Assume that y satisfies the global sector condition

a<ly(y)/y<B, Vt>0,y#0

Popov proof |

Set

Cx
V(x) = x'Px+2np y(o)do
0

where P is an n x n positive definite matrix. Then
V = 2TP+nkyC)i

2(x"P+npyC)[A B] {—xl/f}

IN

2P +npyC) (4 B | %[ - 2wy— p)

2[x" —y] {_ﬁci‘é;ﬁCA -1 —PfﬁCB} {—x‘/’}

By the K-Y-P Lemma there is a P that makes the upper bound
for V strictly negative for all (x,y) # (0,0).

The Kalman-Yakubovich-Popov lemma - Il

Given A € R, B ¢ R™™, M = MT ¢ R+m)x(n+m) with
ioI — A nonsingular for @ € R and (A, B) controllable, the
following two statements are equivalent.

@)

[ (ioI —A)'B }*M { (ioI —A)"'B

I I }SOV(DE

(z7) There exists a matrix P € R"*" such that P = P*
and

ATP+PA PB

<

M+ [ brra ] <0



Proof techniques

(z7) =(i) simple
(iwI —A)~'B

Multiply from right and left by 7

() = (i1) difficult

» Spectral factorization (Anderson)
» Linear quadratic optimization (Yakubovich)
» Find (1, P) as separating hyperplane between the sets

{(B}TM m ,x(Ax + Bu)* + (Ax + Bu)x*> () € Cn+m}
{(r,0):r >0}




