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Nonlinear Control and Servo Systems

Lecture 2

• Lyapunov theory cont’d.

• Storage function and dissipation

• Absolute stability

• The Kalman-Yakubovich-Popov lemma

• Circle Criterion

• Popov Criterion

Krasovskii’s method

Consider

ẋ = f (x), f (0) = 0, f (x) ,= 0, ∀x ,= 0

and

A =
� f

�x

If A+ AT < 0 ∀x ,= 0

then use V = f (x)T f (x) > 0, ∀x ,= 0,

V̇ = f T ḟ + ḟ T f

=

{
ḟ =

� f

�x
ẋ = A f

}

= f T
{
A+ AT

}
f < 0, ∀x ,= 0

See more general case in [Khalil, Exercise 4.10 ]

Invariant Sets

Definition A set M is called invariant if for the system

ẋ = f (x),

x(0) ∈ M implies that x(t) ∈ M for all t ≥ 0.

x(0)

x(t)

M

Invariant Set Theorem

Theorem Let Ω ∈ Rn be a bounded and closed set that is

invariant with respect to

ẋ = f (x).

Let V : Rn → R be a radially unbounded C1 function such that

V̇(x) ≤ 0 for x ∈ Ω. Let E be the set of points in Ω where

V̇(x) = 0. If M is the largest invariant set in E, then every

solution with x(0) ∈ Ω approaches M as t→∞ (see proof in

textbook)

Ω E M

V̇(x)
E M x

Common use is to try to show that the origin is the larges invariant set of E, (M = {0}).

Example – saturated control

Exercise - 5 min (revisited)

Find a bounded control signal u = sat(v), which globally

stabilizes the system

ẋ1 = x1x2

ẋ2 = u

u = sat (v(x1, x2))

(1)

Hint: Use the Lyapunov function candidate

V2 = ln(1+ x
2
1) +α x22

for some appropriate value of α .

V2 = ln(1+ x
2
1) +α x22/2

V̇2 = 2
x1 ẋ1

1+ x2
1

+ 2α x2 ẋ2

= 2x2



x21
1+ x2

1︸ ︷︷ ︸
0≤⋅⋅⋅<1

+α sat(v)




Can use some part to cancel
x2
1

1+x2
1

and some to add bounded

negative damping in x2 (like si�n(x2) or sat(x2) or ...)

With this type of control law, we end up with

V̇ = −q(x2) ≤ 0

for some q(⋅) which only depends on the state x2.

E = {xpq(x) = 0}, i. e., E is the line x2 = 0.
Can solutions stay on that line?

ẋ2 = 0 only for also x1 = 0 (insert control law and check) so the

solution curves will not stay on the line x2 = 0 except for the

origin. Thus, the origin is the larges invariant set and

asymptotic stability follows from the invariant set theorem.

Invariant sets - nonautonomous systems

Problems with invariant sets for nonautonomous systems.

V̇ =
�V

�t
+
�V

�x
f (t, x) depends both on t and x.
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Barbalat’s Lemma - nonautonomous systems

Let φ : IR → IR be a uniformly continuous function on [0,∞).
Suppose that

lim
t→∞

∫ t

0

φ(τ )dτ

exists and is finite. Then

φ(t) → 0 as t→∞

Common tool in adaptive control.

◮ V (t, x) is lower bounded

◮ V̇(t, x) ≤ 0

◮ V̇(t, x) uniformly cont. in time

then V̇ (t, x) → 0 as t→∞

Remark: In many adaptive control cases we have a Lyapunov

function candidate depending on states and parameter errors,

while the time-derivative of the candidate function only depends

on the states.

Nonautonomous systems —-cont’d

[Khalil, Theorem 4.8 & 4.9]

Assume there exists V (t, x) such that

W1(x) ≤︸ ︷︷ ︸
positive definite

V (t, x) ≤ W2(x)︸ ︷︷ ︸
decrecent

V̇ (t, x) =
�V

�t
+
�V

�x
f (t, x) ≤ −W3(x)

W3 is a continuous positive semi-definite function.

Solutions to ẋ = f (t, x) starting in x(t0) ∈ {x ∈ Brp...} are

bounded and satisfy

W3(x(t)) → 0 t→∞

See example in Khalil.

An instability result - Chetaev’s Theorem

Idea: show that a solution arbitrarily close to the origin have to

leave.

Let f (0) = 0 and let V : D → R be a continuously differentiable

function on a neighborhood D of x = 0, such that V (0) = 0.
Suppose that the set

U = {x ∈ D : qxq < r,V (x) > 0}

is nonempty for every r > 0. If V̇ > 0 in U , then x = 0 is

unstable.

V > 0

dV/dt > 0

Exercise - 5 min [Slotine]

Consider the system

ẋ1 = x
2
1 + x

3
2

ẋ2 = −x2 + x
3
1

Use Chetaev’s theorem to show that the origin is an unstable

equilibrium point.

You may consider

V = x1 − x
2
2/2

for a certain region.

Dissipativity

Consider a nonlinear system

{
ẋ(t) = f (x(t),u(t), t), t ≥ 0
y(t) = h(x(t),u(t), t)

and a locally integrable function

r(t) = r(u(t), y(t), t).

The system is said to be dissipative with respect to the supply

rate r if there exists a storage function S(t, x) such that for all

t0, t1 and inputs u on [t0, t1]

S(t0, x(t0)) +

∫ t1
t0

r(t)dt ≥ S(t1, x(t1)) ≥ 0

Example—Capacitor

A capacitor

i = C
du

dt

is dissipative with respect to the supply rate r(t) = i(t)u(t).

A storage function is

S(u) =
Cu2

2

In fact

Cu(t0)
2

2
+

∫ t1
t0

i(t)u(t)dt =
Cu(t1)

2

2

Example—Inductance

An inductance

u = L
di

dt

is dissipative with respect to the supply rate r(t) = i(t)u(t).

A storage function is

S(i) =
Li2

2

In fact

Li(t0)
2

2
+

∫ t1
t0

i(t)u(t)dt =
Li(t1)

2

2
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Memoryless Nonlinearity

The memoryless nonlinearity w = φ(v, t) with sector condition

α ≤ φ(v, t)/v ≤ β , ∀t ≥ 0,v ,= 0

is dissipative with respect to the quadratic supply rate

r(t) = −[w(t) −α v(t)][w(t) − βv(t)]

with storage function

S(t, x) " 0

Linear System Dissipativity

The linear system

ẋ(t) = Ax(t) + Bu(t), t ≥ 0

is dissipative with respect to the supply rate

−

[
x

u

]T
M

[
x

u

]

and storage function xTPx if and only if

M +

[
ATP+ PA PB

BTP 0

]
≥ 0

Storage function as Lyapunov function

For a system without input, suppose that

r(y) ≤ −kpxpc

for some k > 0. Then the dissipation inequality implies

S(t0, x(t0)) −

∫ t1
t0

kpx(t)pcdt ≥ S(t1, x(t1))

which is an integrated form of the Lyapunov inequality

d

dt
S(t, x(t)) ≤ −kpxpc

Interconnection of dissipative systems

If the two systems

ẋ1 = f1(x1,u1) ẋ2 = f2(x2,u2)

are dissipative with supply rates r1(u1, x1) and r2(u2, x2) and

storage functions S(x1), S(x2), then their interconnection

{
ẋ1 = f1(x1,h2(x2))

ẋ2 = f2(x2,h1(x1))

is dissipative with respect to every supply rate of the form

τ1r1(h2(x2), x1) + τ2r2(h1(x1), x2) τ1,τ2 ≥ 0

The corresponding supply rate is

τ1S1(x1) + τ2S2(x2)

Global Sector Condition

β

α

ψ

Let ψ (t, y) ∈ R be piecewise continuous in t ∈ [0,∞) and

locally Lipschitz in y ∈ R.

Assume that ψ satisfies the global sector condition

α ≤ψ (t, y)/y ≤ β , ∀t ≥ 0, y ,= 0 (2)

Absolute Stability

+

yu

Σ(A, B,C)

−ψ (t, ⋅)

The system





ẋ = Ax + Bu, t ≥ 0
y = Cx

u = −ψ (t, y)
(3)

with sector condition (2) is called absolutely stable if the origin

is globally uniformly asymptotically stable for any nonlinearity ψ
satisfying (2).

The Circle Criterion

−1/α −1/β

The system (3) with sector condition (2) is absolutely stable if

the origin is asymptotically stable for ψ (t, y) = α y and the

Nyquist plot

C( jω I − A)−1B + D, ω ∈ R

does not intersect the closed disc with diameter [−1/α ,−1/β ].

Loop Transformation

+

−

yu

+

+

+

−

yu

G(s)G(s)

ψ

ψ
K

−K

Common choices: K = α or K =
α + β

2
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Special Case: Positivity

Let M( jω ) = C( jω I − A)−1B + D, where A is Hurwitz. The

system





ẋ = Ax + Bu, t ≥ 0
y = Cx + Du
u = −ψ (t, y)

with sector condition

ψ (t, y)/y ≥ 0 ∀t ≥ 0, y ,= 0

is absolutely stable if

M( jω ) +M( jω )∗ > 0, ∀ω ∈ [0,∞)

Note: For SISO systems this means that the Nyquist curve lies

strictly in the right half plane.

Proof

Set

V (x) = xTPx, P = PT > 0

[ V̇ = 2xTPẋ

= 2xTP
[
A B

] [ x
−ψ

]
≤ 2xTP

[
A B

] [ x
−ψ

]
+ 2ψ y

= 2
[
xT −ψ

] [P 0

0 I

] [
A B

−C −D

] [
x

−ψ

]

By the Kalman-Yakubovich-Popov Lemma, the inequality

M( jω ) + M( jω )∗ > 0 guarantees that P can be chosen to

make the upper bound for V̇ strictly negative for all

(x,ψ ) ,= (0, 0).

Stability by Lyapunov’s theorem.

The Kalman-Yakubovich-Popov Lemma

◮ Exists in numerous versions

◮ Idea: Frequency dependence is replaced by matrix

equations/inequalities or vice versa 1

1Yakubovich in Lund: –"Yesterday, Ulf told me that nowadays we mostly

use it the other way round!”

The K-Y-P Lemma, version I

Let M( jω ) = C( jω I − A)−1B + D, where A is Hurwitz. Then

the following statements are equivalent.

(i) M( jω ) + M( jω )∗ > 0 for all ω ∈ [0,∞)

(ii) ∃P = PT > 0 such that

[
P 0

0 I

] [
A B

C D

]
+

[
A B

C D

]T [
P 0

0 I

]
< 0

Compare Khalil (5.10-12):

M is strictly positive real if and only if ∃P,W, L, ǫ :
[
PA+ ATP PB − CT

BTP− C D + DT

]
= −

[
ǫP+ LTL LTW

WTL WTW

]

——————————————

Mini-version a la [ Slotine& Li ]:

ẋ = Ax + bu, A Hurwitz, (i. e., Re{λ i(A) < 0}]

y = cx

The following statements are equivalent

◮ Re{c( jω I − A)−1b} > 0,∀w ∈ [0,∞)

◮ There exist P = PT > 0 and Q = QT > 0 such that

ATP+ PA = −Q

Pb = cT

The K-Y-P Lemma, version II

For

[
Φ(s)
Φ̃(s)

]
=

[
C

C̃

]
(sÃ− A)−1(B − sB̃) +

[
D

D̃

]
,

with sÃ− A nonsingular for some s ∈ C, the following two

statements are equivalent.

The K-Y-P Lemma, version II - cont.

(i) Φ( jω )∗Φ̃( jω ) + Φ̃( jω )∗Φ( jω ) ≤ 0 for all ω ∈ R

with det( jω Ã − A) ,= 0.

(ii) There exists a nonzero pair (p, P) ∈ R$Rn$n

such that p ≥ 0, P = P∗ and

[
A B

C D

]∗ [
P 0

0 pI

][
Ã B̃

C̃ D̃

]

+

[
Ã B̃

C̃ D̃

]∗ [
P 0

0 pI

] [
A B

C D

]
≤ 0

The corresponding equivalence for strict inequalities holds with

p = 1.

Some Notation Helps

Introduce

M =
[
A B

]
, M̃ =

[
I 0

]
,

N =
[
C D

]
, Ñ =

[
0 I

]
.

Then

y = [C( jω I − A)−1B + D]u

if and only if

[
y

u

]
=

[
N

Ñ

]
w

for some w ∈ Cn+m satisfying Mw= jω M̃w.
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Lemma 1

Given y, z∈ Cn, there exists an ω ∈ [0,∞) such that y = jω z, if

and only if yz∗ + zy∗ = 0.

Proof Necessity is obvious. For sufficiency, assume that

yz∗ + zy∗ = 0. Then

pv∗(y+ z)p2 − pv∗(y− z)p2 = 2v∗(yz∗ + zy∗)v = 0.

Hence y = λ z for some λ ∈ C ∪ {∞}. The equality

yz∗ + zy∗ = 0 gives that λ is purely imaginary.

Proof of the K-Y-P Lemma

See handout (Rantzer)

(i) and (ii) can be connected by the following sequence of

equivalent statements.

(a) w∗(Ñ∗N + N∗Ñ)w < 0 for w ,= 0 satisfying

Mw= jω M̃w with ω ∈ R.

(b) Θ ∩P = ∅, where

Θ ={(
w∗(Ñ∗N + N∗Ñ)w, M̃ww∗M ∗ +Mww∗M̃ ∗

)
:

w∗w = 1
}

P = {(r, 0) : r > 0}

(c) (convΘ) ∩P = ∅.

(d) There exists a hyperplane in R$Rn$n separating

Θ from P , i.e. ∃P such that ∀w ,= 0

0 > w∗
(
Ñ∗N + N∗Ñ + M ∗PM̃ + M̃ ∗PM

)
w

Time-invariant Nonlinearity

Let ψ (y) ∈ R be locally Lipschitz in y ∈ R.

Assume that ψ satisfies the global sector condition

α ≤ψ (y)/y ≤ β , ∀t ≥ 0, y ,= 0

The Popov Criterion

v

βv

ψ (v)

−2 0 2 4 6 8 10 12 14
−12

−10

−8

−6

−4

−2

0

2

ω ImG(iω )

ReG(iω )

− 1β

Suppose that ψ : R→ R is Lipschitz and 0 ≤ψ (v)/v ≤ β . Let

G(iω ) = C(iω I − A)−1B with A Hurwitz and (A,B,C) minimal.

If there exists η ∈ R such that

Re [(1+ iωη)G(iω )] > −
1

β
ω ∈ R (4)

then the differential equation ẋ(t) = Ax(t) − Bψ (Cx(t)) is

exponentially stable.

Popov proof I

Set

V (x) = xTPx + 2ηβ

∫ Cx

0

ψ (σ )dσ

where P is an n$ n positive definite matrix. Then

V̇ = 2(xTP +ηkψ C)ẋ

= 2(xTP +ηβψ C)
[
A B

] [ x
−ψ

]

≤ 2(xTP +ηβψ C)
[
A B

] [ x
−ψ

]
− 2ψ (ψ − β y)

= 2
[
xT −ψ

] [ PA PB

−βC−ηβCA −1−ηβCB

] [
x

−ψ

]

By the K-Y-P Lemma there is a P that makes the upper bound

for V̇ strictly negative for all (x,ψ ) ,= (0, 0).

Popov proof II

For η ≥ 0, V > 0 is obvious for x ,= 0.

Stability for linear ψ gives V → 0 and V̇ < 0, so V must be

positive also for η < 0.

Stability for nonlinear ψ from Lyapunov’s theorem.

The Kalman-Yakubovich-Popov lemma – III

Given A ∈ Rn$n, B ∈ Rn$m, M = MT ∈ R(n+m)$(n+m), with

iω I − A nonsingular for ω ∈ R and (A, B) controllable, the

following two statements are equivalent.

(i)

[
(iω I − A)−1B

I

]∗

M

[
(iω I − A)−1B

I

]
≤ 0 ∀ω ∈

(ii) There exists a matrix P ∈ Rn$n such that P = P∗

and

M +

[
ATP+ PA PB

BTP 0

]
≤ 0



6

Proof techniques

(ii) [(i) simple

Multiply from right and left by

[
(iω I − A)−1B

I

]

(i) [(ii) difficult

◮ Spectral factorization (Anderson)

◮ Linear quadratic optimization (Yakubovich)

◮ Find (1, P) as separating hyperplane between the sets

{([
x

u

]T
M

[
x

u

]
, x(Ax + Bu)∗ + (Ax + Bu)x∗

)
: (x,u) ∈ Cn+m

}

{(r, 0) : r ≥ 0}

1


