
Introduction to Time-Delay Systems

lecture no. 2

Leonid Mirkin

Faculty of Mechanical Engineering, Technion—Israel Institute of Technology

Department of Automatic Control, Lund University

e�sh

Outline

Nyquist criterion for time-delay systems

Roots of quasi-polynomials: general observations

Delay sweeping (direct method)

Commensurate delays

Lyapunov’s methods

Nyquist stability criterion

rey
-L.s/

The idea is to
I use plot of L.j!/ to count the number of closed-loop poles in NC0.

Namely, assume that L.s/ has no pole/zero cancellations in NC0 and denote:

nol number of poles of L.s/ in NC0

ncl number of poles of 1
1CL.s/ in NC0

~ number of clockwise encirclements of �1C j0 by Nyquist plot of L.j!/
as ! runs from �1 to1

Then
ncl D nol C ~

What is changed for delay systems ?

Nothing, except that
I we might no longer be interested in NC0 as stability region.

Formal workaround: shift Nyquist contour a bit left or, equivalently,
I plot Nyquist plot of L.˛ C j!/ for some ˛ < 0,

yet by this intuition we have about frequency response gets lost.

We still can use L.j!/ if we
I rule out situation with pole chain around j!-axis.

If L.s/ D b0.s/Cbh.s/e�sh

a0.s/Cah.s/e�sh , then closed-loop system is

1

1C L.s/ D
a0.s/C ah.s/e�sh

.a0.s/C b0.s//C .ah.s/C bh.s//e�sh

and we should rule out
ˇ̌
ah.1/Cbh.1/
a0.1/Cb0.1/

ˇ̌ D 1 by considering it unstable.



Dead-time systems

rey
-Lr.s/e�sh

Particularly simple analysis because of simple rules of plotting Lr.j!/e�j!h.

Just remember that
I if jLr.1/j D 1, closed-loop systems unstable

no matter how many times the critical point is encircled.

Examples of jLr.1/j D 1
L.s/ D sC2

sC1 e
�s : L.s/ D s

sC1 e
�s :
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infinite number of closed-loop poles in NC0 no closed-loop poles in NC0

Examples of jLr.1/j > 1
L.s/ D 2sC1

sC2 e�0:05s : L.s/ D 2sC1
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Examples of jLr.1/j < 1
L.s/ D 0:4

s2C0:1sC1 :

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

−900 −720 −540 −360 −180 0

−10

−5

0

5

10

Nichols Chart

Open−Loop Phase (deg)

O
p

e
n

−
L

o
o

p
 G

a
in

 (
d

B
)

no closed-loop poles in NC0



Examples of jLr.1/j < 1
L.s/ D 0:4
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two closed-loop poles in NC0

Examples of jLr.1/j < 1
L.s/ D 0:4

s2C0:1sC1 e
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Examples of jLr.1/j < 1
L.s/ D 0:4
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four closed-loop poles in NC0
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Problem formulation

Consider (characteristic) quasi-polynomial

�h.s/ D P.s/CQ.s/e�sh

with

P.s/ D sn C pn�1sn�1 C � � � C p1s C p0;
Q.s/ D qmsm C qm�1sm�1 C � � � C q1s C q0; qm ¤ 0:

The problem is to
I check whether �h.s/ has all its roots in C n NC˛

for some ˛ < 0.

Continuity of roots

Define
�r;h´ sup

˚
Re s W �h.s/ D 0

	
Then, the following result holds:

Theorem

1. �r;h is continuous as a function of h for all h > 0

2. if, in addition, �h.s/ is retarded, then �r;h is continuous at h D 0 as well

Important consequence of this is that
I as h changes, roots of �h.s/ may transit LHP-2-RHP (or vise versa) by

crossing j!-axis only.

Assumptions

For

P.s/ D sn C pn�1sn�1 C � � � C p1s C p0;
Q.s/ D qmsm C qm�1sm�1 C � � � C q1s C q0; qm ¤ 0:

we assume that

A1: m � n,

A2: if m D n, then jqmj < 1,
A3: P.s/ and Q.s/ have no common roots in NC0 (i.e., coprime in NC0),

A4: p0 C q0 ¤ 0.
because

I A1,2 guarantee
ˇ̌
Q.1/
P.1/

ˇ̌
< 1 (otherwise unstable for all h > 0).

I if A3 does not hold, �h.s/ unstable for all h � 0.
I if A4 does not hold, �h.0/ D 0 for all h � 0.
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Idea

To analyze stability �h.s/ by
I continuous increase of h starting from h D 0.

Namely, the analysis steps are as follows:

1. locate roots1 of �0.s/ D P.s/CQ.s/;
2. increase h and check for j!-axis crossings2 of roots of �h.s/:

I LHP to RHP crossings called are switches
I RHP to LHP crossings called are reversals

Stability of �h.s/ can then be verified by counting switches and reversals.

1As polynomial �0.s/ is finite dimensional, this step is trivial.
2We’ll see below that this step can be efficiently performed.

j! crossings

If at some h roots of �h.s/ cross j!-axis, we have (mind A3):

P.j!/CQ.j!/e�j!h D 0 ” �Q.j!/
P.j!/

D ej!h:

This, in turn, is equivalent to:

1.
ˇ̌
Q.j!/
P.j!/

ˇ̌ D 1 or jP.j!/j D jQ.j!/j (magnitude relation),

2. !h D arg
��Q.j!/

P.j!/

�C 2�k for some k 2 Z (phase relation).

Note that:
I for any ! > 0 satisfying 1, equality 2 is always solvable for h;
I if ! > 0 is solution of 1, then so is �!;
I if ! D 0 is solution of 1, equality 2 cannot hold because of A4.

Conclusion:
I existence of j! roots of characteristic equation completely determined

by magnitude equation and does not depend on delay.

Positive solutions of jA.j!/j D jB.j!/j
This equation can be rewritten as

P.j!/P.�j!/ �Q.j!/Q.�j!/µ �.!/ D 0;

which is polynomial equation in !2. Thus, all frequencies !i at which rots
of �h.s/ cross j!-axis can be found from positive real roots of �.s/.

Example

Let P.s/ D s2 C 0:1s C 1 and Q.s/ D q0 > 0. Then

�.!/ D .�!2 C j0:1! C 1/.�!2 � j0:1! C 1/ � q20
D .1 � !2/2 C 0:12!2 � q20
D !4 � 2 � 0:995!2 C 1 � q20 D 0

Three situations possible:

1. if 0 < q0 <
p
1 � 0:9952 � 0:099875, there are no real solutions;

2. if
p
1 � 0:9952 � q0 < 1, there are two positive real solutions

!21 D 0:995C
q
0:9952 � 1C q20 ; !22 D 0:995 �

q
0:9952 � 1C q20 I

3. if q0 � 1, there is one positive real solution

!21 D 0:995C
q
0:9952 C q20 � 1:



Crossing directions

Depend on �.!/´ sgnRe ds
dh

ˇ̌
sDj! at (positive) crossing frequencies:

�.!i / > 0 roots migrate from LHP to RHP at !i > 0 (switch)

�.!i / < 0 roots migrate from RHP to LHP at !i > 0 (reversal)

�.!i / D 0 roots migration depends on higher derivatives or

The question now is
I how to compute sgnRe ds

dh at jRC solutions of �h.s/ D 0 ?

Some differential calculus

Note that

0 D d

dh
�h.s/ D dP.s/

ds

ds

dh
C dQ.s/

ds

ds

dh
e�sh �Q.s/e�sh

�
h
ds

dh
C s

�
:

Thus, denoting by .�/0 differentiation with respect to s, we have:

ds

dh
D sQ.s/e�sh

P 0.s/CQ0.s/e�sh � hQ.s/e�sh D �s
�
P 0.s/
P.s/

� Q
0.s/

Q.s/
C h

��1
;

where equality Q.s/e�sh D �P.s/ was used. Since sgnRe ´�1 D sgnRe ´,

�.!/ D sgnRe

�
� 1
j!

�
P 0.j!/
P.j!/

� Q
0.j!/

Q.j!/
C h

��
D sgnRe

�
j

!

�
P 0.j!/
P.j!/

� Q
0.j!/

Q.j!/

��
(as Re

h

j!
D 0)

D sgnRe

�
j

�
P 0.j!/
P.j!/

� Q
0.j!/

Q.j!/

��
; (as ! 2 R)

which does not depend on h.

Some differential calculus (contd)

Multiplying expression under “sgn” by P.j!/P.�j!/ D Q.j!/Q.�j!/ > 0,

�.!/ D sgnRe

�
j

�
dP.j!/

d.j!/
P.�j!/ � dQ.j!/

d.j!/
Q.�j!/

��
D sgnRe

�
dP.j!/

d!
P.�j!/ � dQ.j!/

d!
Q.�j!/

�
Then, since sgnRe ´ D sgn.´C ´/,

�.!/ D sgnRe

�
dP.j!/

d!
P.�j!/ � dQ.j!/

d!
Q.�j!/

CdP.�j!/
d!

P.j!/ � dQ.�j!/
d!

Q.j!/

�
D sgn

d�.!/

d!

Crossing directions (contd)

Thus, we have:

sgn P�.!i / > 0 roots migrate LHP-2-RHP at !i > 0 (switch)

sgn P�.!i / < 0 roots migrate RHP-2-LHP at !i > 0 (reversal)

sgn P�.!i / D 0 roots migration depends on higher derivatives3 or

3Still, Walton and Marshall (1987) showed that if �.!/ changes its sign from “�” to “C”
at ! D !i , we have LHP-2-RHP migration, if from “C” to “�”—RHP-2-LHP migration, and
if it doesn’t change sign—no migrations take place (touch point).



Example (contd)

Return to example with P.s/ D s2 C 0:1s C 1 and Q.s/ D q0 > 0. Here

�.!/ D d
d! .!

4 � 2 � 0:995!2 C 1 � q20/ D 4!.!2 � 0:995/:

1. if q0 D
p
1 � 0:9952, then !1 D !2 D 0:995 and

�.!1/ D �.!2/ D 0
(in fact, in this case no j!-axis crossings take place);

2. if
p
1 � 0:9952 < q0 < 1 (two different crossing frequencies), then

�.!1/ D 4!1
q
0:9952 � 1C q20 > 0;

�.!2/ D �4!2
q
0:9952 � 1C q20 < 0

(so that !1 is always switch and !2 is always reversal);
3. if q0 � 1 (one crossing frequency), then

�.!1/ D 4!1
q
0:9952 � 1C q20 > 0

(so that !1 is always switch).

Some qualitative observations about crossing frequencies

�.!/ is even real polynomial in ! with positive leading coeff. (mind A1,2):

�
.!
/

!!1!2!3!4!5

Crossing frequencies solve �.!/ D 0 and crossing directions determined by
directions of �.!/ at zero crossings (for increasing !). This means that

I the largest crossing frequency is always a switch,
I switch and reversal frequencies always interlace

(with possible tangential points, at which no crossings occur, between them)

Crossing delays

It’s time to make use of the phase relation at j!-crossing:

!h D arg
��Q.j!/

P.j!/

�C 2�k; k 2 Z and such that h � 0: (1)

For each crossing frequency !i this equation yields sequence of delays

hi;k D hi;0 C 2�
!i
k; k 2 N;

where hi;0 > 0 is the smallest solution of (1). Then:
I if !i is switch (�.!i / > 0), two poles move LHP-2-RHP at each hi;k;
I if !i is reversal (�.!i / < 0), two poles move RHP-2-LHP at each hi;k.

Thus, if we know poles of �0.s/, stability analysis of �h.s/ needs

1. sorting all hi;k in increasing order3,

2. counting all crossings up to h.

3Smallest delay at which first crossing occurs need not correspond to largest frequency.

Example (contd)

Return to example with P.s/ D s2C0:1sC1 and Q.s/ D q0 and let q0 D 0:4
In this case we have !1 � 1:176 (switch) and !2 � 0:78 (reversal) and

h1;k � 0:254C 5:344 k D f0:254; 5:598; 10:942; 16:286; : : :g;
h2;k � 3:778C 8:06 k D f3:778; 11:838; 19:898; 27:958; : : :g:

This yields the following ordered list of crossing (switch and reversal) delays:

fh1;0; h2;0; h1;1; h1;2; h2;1; h1;3; : : :g:

Since �0.s/ D s2 C 0:1s C 1:4 is stable, �h.s/ is
I stable in h 2 Œ0; 0:254/,
I unstable in h 2 Œ0:254; 3:778� (two poles went to RHP at h D 0:254),
I stable in h 2 .3:778; 5:598/ (two poles returned to LHP at h D 3:778),
I unstable in h 2 Œ5:598;1/ (two poles went to RHP at h D 5:598, then

another two—at h D 10:942, before first two returned at h D 11:838).



Example (contd)

Thus, quasi-polynomial �h.s/ D s2 C 0:1s C 1C 0:4e�sh is stable in

h 2 Œ0; 0:254/ [ .3:778; 5:598/:

And now compare with Nichols charts (doesn’t it ring a bell ?):
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Nichols charts of 0:4
s2C0:1sC1 e!sh

h D 0

h D 1

h D 5

h D 11

Some qualitative observations about crossings

The following facts are worth remembering:
I Delay distance between two crossings at the same frequency !i is 2�

!i
.

Hence, shortest distance is between two switches, which means that at
some point there is always � 2 RHP poles. Consequently, there

I always exists a delay, say hmax, such that �h.s/ unstable 8h � hmax.

This hmax is calculable.

I If there are no crossing frequencies, then stability / instability properties
are delay independent.

Frequency domain vs. modal analysis

There is some nice interplay between these methods. For example:
I roots crossing frequencies are crossover frequencies of loop frequency

response,
I root crossing delays correspond to delay margins,
I . . .

Arguably (I’m rather opinionated on this:-),
I frequency-response analysis provides more insight (cleaner thinking),
I modal analysis easier leads to reliable computations.

What is certain is that one must
I not confine oneself to either one of these approaches,

interplay between them yields better understanding (and is also fun).

Other modal analysis methods
I bilinear (Rekasius) transformation

replace e�sh with 1��s
1C�s , which covers the same area in C as � grows from �1 to1

I 2D representation
replace e�sh with ´ and analyze stability with respect to both s 2 jR and ´ 2 T
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Example

Let
�h;2.s/ D s C e�sh C e�s2h:

Like in single-delay case, we look for j!-crossings of roots. As �h;2.s/ real,
its j!-axis roots coincide with those of �h;2.�s/, i.e., they satisfy both

s C e�sh C e�s2h D 0 and � s C esh C es2h D 0

From the first equation, e�s2h D �s � e�sh, then from the second equation:

0 D 1C e�sh � se�s2h D 1C e�sh C s.s C e�sh/ D 1C s2 C .1C s/e�sh

This is a single-delay quasi-polynomial with

�.!/ D .1 � !2/2 � .1C !2/ D !2.!2 � 3/

from which crossing ! D p3 (switch) and crossing h1;0 D arg 1Cj
p

3

2p
3
D �

3
p
3
.

As �0;2.s/ stable, �h;2.s/ stable iff h 2 Œ0; �

3
p
3
/.

More general observations

Let
�h;2.s/ D P.s/CQ1.s/e

�sh CQ2.s/e
�s2h

Clearly, sc D j!c is root of �h;2.s/ iff it is root of

e�s2h�h;2.�s/ D Q2.�s/CQ1.�s/e�sh C P.�s/e�s2h

Hence, this sc D j!c is also root of

�h;1.s/´ P.�s/�h;2.s/ �Q2.s/e
�s2h�h;2.�s/

D P.s/P.�s/ �Q2.s/Q2.�s/C
�
Q1.s/P.�s/ �Q2.s/Q1.�s/

�
e�sh

which is single-delay quasi-polynomial. Yet converse not necessarily true:
I �h;1.s/ might have more j!-roots4 than �h;2.s/,

which complicates the analysis.

4In fact, j!-roots of �h;1.s/ are roots of either �h;2.s/ or P.s/P.�s/ �Q2.s/Q2.�s/.

More general observations (contd)

If sc D j!c is crossing point of �h;1.s/ such that

jP.j!c/j ¤ jQ2.j!c/j;

then it also crossing point of �h;2.s/.

Moreover, crosing directions at �h;1.j!c/ and �h;2.j!c/

I coincide iff jP.j!c/j > jQ2.j!c/j
I opposite iff jP.j!c/j < jQ2.j!c/j
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Lyapunov’s method for finite-dimensional systems

Consider LTI system
Px.t/ D Ax.t/; x.0/ D x0

and assume there is (differentiable) V.x/ W Rn 7! RC such that5

1. V.0/ D 0
2. V.x/ > 0 for all x ¤ 0
3. derivative along trajectory PV .x/´ @V.x/

@x
dx
dt � 0

called Lyapunov function. Then system is stable (in the sense of Lyapunov).

If 3 replaced with

30. PV .x/ < 0
system is asymptotically stable. Yet another way to end up with asymptotic
stability is via LaSalle Invariance Principle

300. PV .x/ � 0 and PV .x/ � 0 implies x.t/ � 0.

5In principle, statements like V.x/ > 0 should be more specific, yet we proceed with this
sloppiness to simplify exposition.

Lyapunov’s method for finite-dimensional systems (contd)

Let’s choose
V.x/ D x0.t/P x.t/

for some P > 0. Then

PV .x/ D Px0.t/P x.t/C x0.t/P Px.t/ D x0.t/A0Px.t/C x0.t/PAx.t/
D x0.t/.A0P C PA/x.t/

If we can choose P > 0 satisfying A0P C PA D �C 0C for some C ,

PV .x/ D �x0.t/C 0Cx.t/ � 0;

which implies stability. For asymptotic stability we then need observability
of .C;A/ as in that case Cx.t/ � 0 implies x.t/ � 0. In fact

I 9P > 0 such that A0P C PA < 0 ” A Hurwitz

and P D
Z 1
0

eA
0�C 0C eA�d� > 0 is observability Gramian of .C;A/.

Adding delays: developing intuition via discrete systems

Consider
NxŒk C 1� D A0 NxŒk�C A1 NxŒk � h�

As state vector here Nxa D
� Nx0Œk� Nx0Œk � 1� � � � Nx0Œk � h��0, quadratic

Lyapunov function should look like

NV . Nxa/ D
� Nx0Œk� Nx0Œk � 1� � � � Nx0Œk � h��

>0‚ …„ ƒ26664
NP00 NP01 � � � NP0h
NP10 NP11 � � � NP1h
:::

:::
: : :

:::
NPh0 NPh1 � � � NPhh

37775
26664
NxŒk�
NxŒk � 1�

:::

NxŒk � h�

37775
D

hX
iD0

hX
jD0
Nx0Œk � i � NPij NxŒk � j �



Adding delays: Lyapunov-Krasovskiı̆ functional

Consider
Px.t/ D A0x.t/C A1x.t � h/

Quadratic Lyapunov function (actually, functional fŒ�h; 0� 7! Rng 7! RC) for
this system could be of the form

V.x� / D
Z h

0

Z h

0

x0.t � �/P.�; �/x.t � �/d�d�

for some function P.�; �/, where 0 � �; � � h, such that P.�; �/ D P 0.�; �/
and

R h
0

R h
0
�0.�/P.�; �/�.�/d�d� > 0 for all �.�/ 6� 0. This functional called

Lyapunov-Krasovskiı̆ functional.

Alternative expression:

V.x� / D
Z t

t�h

Z t

t�h
x0.�/P.t � �; t � �/x.�/d�d�

Adding delays: Lyapunov-Krasovskiı̆ functional (contd)

Choice regarded sufficiently general is

P.�; �/ D P0ı.�/ı.�/CP 01.�/ı.�/CP1.�/ı.�/CP2.�/ı.� � �/CP3.� � �/

for some matrix P0, matrix functions P1.�/ and P2.�/ defined in � 2 Œ0; h�,
and matrix function P3.t/ defined in t 2 Œ�h; h�. In this case

V.x� / D x0.t/P0x.t/C
Z h

0

Z h

0

x0.t � �/P3.� � �/x.t � �/d�d�

C 2x0.t/
Z h

0

P1.�/x.t � �/d� C
Z h

0

x0.t � �/P2.�/x.t � �/d�

the derivative of which is a mess6. . .

6It is possible to choose P.�; �/ of this form by reverse engineering: choose observable
“measurement operator” for state vector and construct P.�; �/ as observability Gramian.

Delay-independent conditions via LK approach

Consider Px.t/ D A0x.t/C Ahx.t � h/ and choose

V.x� / D x0.t/P0x.t/C
Z t

t�h
x0.�/P2x.�/d�

for some P0 > 0 and Ph > 0. Then, using Leibniz integral rule,

PV .x� / D Px0.t/P0x.t/C x0.t/P0 Px.t/C x0.t/P2x.t/ � x0.t � h/P2x.t � h/

D �x0.t/ x0.t � h/� �A00P0 C P0A0 C P2 P0Ah
A0
h
P0 �P2

� �
x.t/

x.t � h/
�

Thus, if there are P0 > 0 and P2 > 0 such that�
A00P0 C P0A0 C P2 P0Ah

A0
h
P0 �P2

�
< 0;

PV .x� / � 0 and system asymptotically stable (mind LaSalle). This is
I Linear Matrix Inequality (LMI), which can be efficiently solved.

Adding delays: Razumikhin approach

Consider again
Px.t/ D A0x.t/C A1x.t � h/

Lyapunov function for it, V.x� /, doesn’t have to be quadratic. We may take

V.x� / D max
�2Œ�h;0�

QV .x.t C �//

for some “Lyapunov function” QV .x/. In this case PQV .x/ may be even positive
at points where QV .x/ < V.x� /. This, relaxed, condition reads as follows:

Theorem (Razumikhin)
System is asymptotically stable if there is V.x/ W Rn 7! RC such that

1. V.0/ D 0
2. V.x/ > 0 for all x ¤ 0
3. PV .x/ < 0 whenever �V.x.t// � V.x.t C �//, � 2 Œ�h; 0�, for some � > 1



Delay-independent conditions via Razumikhin approach

Consider Px.t/ D A0x.t/C Ahx.t � h/ and choose

V.x/ D x0.t/P x.t/

for some P > 0. For every � > 1 and ˛ > 0 we can define function

 .t/´ PV .x/C ˛��V.x.t// � V.x.t � h//�
D Px0.t/P x.t/C x0.t/P Px.t/C ˛��x0.t/P x.t/ � x0.t � h/Px.t � h/�
D �x0.t/ x0.t � h/� �A00P C PA0 C ˛�P PAh

A0
h
P �˛P

� �
x.t/

x.t � h/
�

At
˚
x.t/ W V.x.t C �// � �V.x.t//	 we have that  � PV . Thus, if  < 0, the

system is stable by Razumikhin arguments. Hence, if there is matrix P > 0

and scalar ˛ > 0 such that�
A00P C PA0 C ˛P PAh

A0
h
P �˛P

�
< 0;

then the system asymptotically stable.

Lyapunov-Krasovskiı̆ vs. Razumikhin (not generic)

If there are P > 0 and ˛ > 0 such that�
A00P C PA0 C ˛P PAh

A0
h
P �˛P

�
< 0;

then �
A00P0 C P0A0 C P2 P0Ah

A0
h
P0 �P2

�
< 0 for P0 D P and P2 D ˛P :

Thus, the LK condition holds whenever so does the Razumikhin condition,
but not necessarily vise versa. Hence,

I in this case Razumikhin approach is potentially more conservative

(solvability of LK LMI does not necessarily mean that Ph D ˛P0).

Delay-independent stability in scalar case

Consider Px.t/ D a0x.t/C ahx.t � h/ for x 2 R. Delay-independent stability
would require stability at h D 0 and no positive crossing frequencies. These
read

a0 C ah < 0 and !2 C a20 D a2h has no positive real solutions

or, equivalently,
a20 � a2h and a0 < 0

(the latter can be interpreted as stability under h!1).

Scalar case: Lyapunov-Krasovskiı̆ and Razumikhin

LK solvability LMI becomes

9p0 > 0; p2 > 0 such that
�
2a0p0 C p2 ahp0

ahp0 �p2

�
< 0:

Taking Schur complement of the .2; 2/ term, the last condition equivalent to

2a0p0 C p2 C a2hp20=p2 < 0 ” p22 C 2a0p0 p2 C a2hp20 < 0:

The latter reads

a0 < 0 and a20p
2
0 � a2hp20 � 0 ” a20 � a2h;

i.e., we recover exact conditions (LK conservative in general). In scalar case�
2a0p0 C p2 ahp0

ahp0 �p2

�
< 0 ”

�
2a0p C ˛p ahp

ahp �˛p
�
< 0

and Razumikhin result coincides with Lyapunov-Krasovskiı̆ one.
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