Introduction to Time-Delay Systems

Fall 2012

Homework no. 1

(submission deadline: 31.10.2012, 10:00am)

Problem 1 (25%). Suggest a proper transfer function G(s) whose frequency response $G(j\omega)$ is unbounded for $\omega \to \infty$. Does it correspond to a causal system?

Problem 2 (25%). Consider time-varying delay element $\mathcal{D}_{h(t)}$ defined as

 $y(t) = \mathcal{D}_{h(t)}u(t) \iff y(t) = u(t - h(t))$

for a function h(t) such that $0 \le h(t) \le t$ for all *t*.

- 1. Is $\mathcal{D}_{h(t)}$ bounded as an operator $L^2(\mathbb{R}^+) \mapsto L^2(\mathbb{R}^+)$?
- 2. Is $\mathcal{D}_{h(t)}$ bounded as an operator $L^2(\mathbb{R}^+) \mapsto L^2(\mathbb{R}^+)$ if we assume in addition that $h(t) \leq 1$ for all t?

Problem 3 (25%). The transfer function

$$\Delta_h(s) := \frac{1 - \mathrm{e}^{-sh}}{h}, \qquad h > 0$$

may be considered as a causal approximation of the derivative element $\Delta(s) = s$.

- 1. Prove that $\Delta_h \in H^{\infty}$.
- 2. What is the high-frequency gain of $\Delta_h(s)$?

Another frequently used approximation of the derivative is the rational approximation $\Delta_{r,\tau}(s) := \frac{s}{\tau s+1}$

- 3. Find τ_h such that the high-frequency gain of $\Delta_{\mathbf{r},\tau_h}(s)$ is the same as that of $\Delta_h(s)$.
- 4. Consider now two approximations of the derivative: $\Delta_h(s)$ and $\Delta_{r,\tau_h}(s)$. Which of them results in a smaller approximation error in a given bandwidth ω_b ? Does the answer depend on ω_b ? Does the answer depend on h? By approximation errors consider the quantities

$$\max_{\omega \in [0,\omega_b]} \left| 1 - \frac{\Delta_h(j\omega)}{\Delta(j\omega)} \right| \quad \text{and} \quad \max_{\omega \in [0,\omega_b]} \left| 1 - \frac{\Delta_{r,\tau_h}(j\omega)}{\Delta(j\omega)} \right|,$$

respectively.

Transcendental equations may be solved numerically, the rest must be done analytically.

Problem 4 (25%). Derive $R_{[2,3]}(s)$, which is the [2, 3]-Padé approximation of $\frac{e^{-s}}{s+1}$ and compute $\left\|\frac{e^{-s}}{s+1} - R_{[2,3]}(s)\right\|_{\infty}$ (numerically). Compare this quantity with $\left\|\frac{e^{-s}}{s+1} - \frac{R_{[2,2]}(s)}{s+1}\right\|_{\infty}$, where $R_{[2,2]}(s)$ is the [2, 2]-Padé approximation of e^{-s} .