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¢1-norm heuristics for cardinality problems
e cardinality problems arise often, but are hard to solve exactly
e a simple heuristic, that relies on £1-norm, seems to work well

e used for many years, in many fields

— sparse design

— LASSO, robust estimation in statistics

— support vector machine (SVM) in machine learning

— total variation reconstruction in signal processing, geophysics
— compressed sensing

e recent theoretical results guarantee the method works, at least for a few
problems
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Cardinality

e the cardinality of x € R", denoted card(x), is the number of nonzero
components of x

0 z=0
1 #0

e card is quasiconcave on R (but not R") since

e card is separable; for scalar z, card(x) = {

card(x + y) > min{card(z), card(y)}

holds for x,y = 0
e but otherwise has no convexity properties

e arises in many problems
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General convex-cardinality problems

a convex-cardinality problem is one that would be convex, except for
appearance of card in objective or constraints

examples (with C, f convex):

e convex minimum cardinality problem:

minimize card(z)
subjectto x €C

e convex problem with cardinality constraint:

minimize  f(x)
subjectto z €C, card(z) <k
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Solving convex-cardinality problems
convex-cardinality problem with z € R"
e if we fix the sparsity pattern of = (i.e., which entries are zero/nonzero)

we get a convex problem

e by solving 2™ convex problems associated with all possible sparsity
patterns, we can solve convex-cardinality problem
(possibly practical for n < 10; not practical forn > 150rso .. .)

e general convex-cardinality problem is (NP-) hard

e can solve globally by branch-and-bound

— can work for particular problem instances (with some luck)
— in worst case reduces to checking all (or many of ) 2" sparsity patterns
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Boolean LP as convex-cardinality problem

e Boolean LP:

minimize ¢!z

subject to Ax <b, x; €{0,1}
includes many famous (hard) problems, e.g., 3-SAT, traveling salesman

e can be expressed as

minimize clzx

subject to Ax <b, card(z)+card(l —z)<n
since card(x) + card(1 —z) <n < x; € {0,1}

e conclusion: general convex-cardinality problem is hard
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Sparse design

minimize  card(x)
subjectto z €C

e find sparsest design vector x that satisfies a set of specifications

e zero values of x simplify design, or correspond to components that
aren't even needed

e examples:

— FIR filter design (zero coefficients reduce required hardware)

— antenna array beamforming (zero coefficients correspond to unneeded
antenna elements)

— truss design (zero coefficients correspond to bars that are not needed)

— wire sizing (zero coefficients correspond to wires that are not needed)
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Sparse modeling / regressor selection

fit vector b € R"™ as a linear combination of k regressors (chosen from n
possible regressors)

minimize  ||[Ax — b||2
subject to card(x) <k

e gives k-term model

e chooses subset of k regressors that (together) best fit or explain b

e can solve (in principle) by trying all (Z) choices

e variations:

— minimize card(x) subject to |[Ax — bl|s < €
— minimize ||Az — b||2 + A card(x)
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Sparse signal reconstruction

e estimate signal x, given

— noisy measurement y = Ax +v, v ~ N(0,0°I) (A is known; v is not)
— prior information card(x) < k

e maximum likelihood estimate Z,, Is solution of

minimize  ||Ax — y||2
subject to card(x) <k
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Estimation with outliers

we have measurements y; = alx +v; +w;, i=1,...,m
noises v; ~ N (0, 0?) are independent

only assumption on w is sparsity: card(w) < k

B = {i | w; # 0} is set of bad measurements or outliers

maximum likelihood estimate of x found by solving

minimize ) ;. 5(yi — al'r)?

subject to |B| < k

with variables x and B C {1,...,m}

equivalent to
minimize  |ly — Az — wl|3
subject to card(w) <k
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Minimum number of violations

e set of convex inequalities

fi(z) <0, ..., fm(z) <0, z€C

e choose x to minimize the number of violated inequalities:
minimize  card(t)

subject to  fi(x) <t;,, i=1,...,m
xel, t>0

e determining whether zero inequalities can be violated is (easy) convex
feasibility problem
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Linear classifier with fewest errors

e given data (x1,v1),---, (Tm,ym) € R" x {—1,1}
o we seek linear (affine) classifier y ~ sign(w!z + v)
e classification error corresponds to y;(w!z +v) <0
e to find w, v that give fewest classification errors:

minimize  card(t)
subject to  y;(wlz; +v)+¢,>1, i=1,...,m

with variables w, v, t (we use homogeneity in w, v here)
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Smallest set of mutually infeasible inequalities

e given a set of mutually infeasible convex inequalities
fi(z) <0,..., fm(x) <0

e find smallest (cardinality) subset of these that is infeasible
e certificate of infeasibility is g(A) = inf, (> ", Aifi(z)) > 1, A =0

e to find smallest cardinality infeasible subset, we solve

minimize  card(\)
subject to g(A)>1, A >0

(assuming some constraint qualifications)
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Portfolio investment with linear and fixed costs

e we use budget B to purchase (dollar) amount z; > 0 of stock i

e trading fee is fixed cost plus linear cost: Scard(z) + alx

e budget constraint is 17z + Scard(z) + o'z < B

e mean return on investment is ,uT:U; variance is ' Yz

e minimize investment variance (risk) with mean return > Rin:
minimize 2! Y2

subject to ,uTx > Rpin, x>0
172 + Becard(z) + o'z < B
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Piecewise constant fitting

fit corrupted x.,- by a piecewise constant signal £ with k£ or fewer jumps

problem is convex once location (indices) of jumps are fixed

T is piecewise constant with < k jumps <= card(Dz) < k, where

1 —1
1 -1
D =
as convex-cardinality problem:
minimize  ||Z — Tcor|2

c R(n—l)Xn

subject to card(Dz) < k
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Piecewise linear fitting

o fit x.or by a piecewise linear signal £ with k£ or fewer kinks
e as convex-cardinality problem:

minimize || — Tcorl|2
subject to card(V?%) < k

where
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/1-norm heuristic

1, or add regularization term || z||; to

e replace card(z) with ~||z|
objective

e v > (0 is parameter used to achieve desired sparsity
(when card appears in constraint, or as term in objective)

e more sophisticated versions use ) . w;|z;| or Y. wi(2zi)+ + >, vi(2i)—,
where w, v are positive weights
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Example: Minimum cardinality problem

e start with (hard) minimum cardinality problem

minimize  card(z)
subjectto z €C

(C convex)
e apply heuristic to get (easy) £1-norm minimization problem

minimize ||z
subjectto x €C
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Example: Cardinality constrained problem

e start with (hard) cardinality constrained problem (f, C convex)
minimize  f(x)
subjectto z €C, card(z) <k
e apply heuristic to get (easy) ¢1-constrained problem
minimize  f(x)
subjectto z€C, |«z|1 <8
or /1-regularized problem
minimize  f(x) + v||z||1
subject to x €C

B, v adjusted so that card(z) < k
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Polishing

e use {1 heuristic to find £ with required sparsity

e fix the sparsity pattern of &

e re-solve the (convex) optimization problem with this sparsity pattern to
obtain final (heuristic) solution
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Interpretation as convex relaxation

e start with
minimize card(z)
subjectto x€C, |z]leoc <R

e equivalent to mixed Boolean convex problem

minimize 17z
subject to |z;| < Rz, i=1,...,n

relC, 2z €{0,1}, i=1,...

with variables z, z
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e now relax z; € {0,1} to z; € [0, 1] to obtain
minimize 17z
subject to |x;| < Rz;, i=1,...,n
x el
OSZZSL izl,...,n

which is equivalent to

minimize  (1/R)||z||1
subjectto x €C

the /1 heuristic

e optimal value of this problem is lower bound on original problem
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Interpretation via convex envelope

e convex envelope "V of a function f on set C is the largest convex
function that is an underestimator of f on C

e epi(f") = Co(epi(f))

o [ = (f*)* (with some technical conditions)

e for x scalar, |x| is the convex envelope of card(zx) on [—1, 1]
e for x € R", (1/R)||z||1 is convex envelope of card(x) on

12 [ |zllee < R}
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Weighted and asymmetric /; heuristics

minimize card(x) over convex set C

suppose we know lower and upper bounds on x; over C
rel = [; <ux; <uy
(best values for these can be found by solving 2n convex problems)

if u; <0orl; >0, then card(z;) =1 (i.e., z; #0) forall z € C

assuming [; < 0, u; > 0, convex relaxation and convex envelope
Interpretations suggest using

3 (e )

as surrogate (and also lower bound) for card(z)
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Regressor selection

minimize  ||[Ax — b||2
subject to card(x) <k

e heuristic:

— minimize ||[Az — b||2 + v||z||1
— find smallest value of v that gives card(x) < k
— fix associated sparsity pattern (i.e., subset of selected regressors) and

find x that minimizes ||Az — b||2
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Example (6.4 in BV book)

° A c R10X20, T € RQO, b c RlO
e dashed curve: exact optimal (via enumeration)

e solid curve: £; heuristic with polishing

2t O

0 ‘

0 1 2 3 4
| Az — bl|2
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Sparse signal reconstruction

e convex-cardinality problem:

minimize  ||Ax — y||2
subject to card(x) <k

e /1 heuristic:
minimize  |[Ax — y||2
subject to ||z||1 < 6

(called LASSO)

e another form: minimize ||Az — y||2 + v||z1
(called basis pursuit denoising)

Lund University, 24/8/2012
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Example

e signal x € R" with n = 1000, card(x) = 30

e m = 200 (random) noisy measurements: y = Az + v, v ~ N (0,0°1),
Aij ~ N(07 1)

e left: original; right: {1 reconstruction with v = 1073

1 1
0.8 g 0.8
0.6 g 0.6
0.4f g 0.4
0.2 g 0.2
0 0
-0.2| g -0.2|
-0.41 g -0.4|
-0.6 g -0.6|-
-0.8| g -0.8|
1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Lund University, 24/8/2012 28



e (5 reconstruction; minimizes | Az — y||2 + 7v||z||2, where v = 107?

e left: original; right: /5 reconstruction
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Some recent theoretical results

e suppose y = Az, A € R™*" card(z) < k
e to reconstruct x, clearly need m > k

e if m > n and A is full rank, we can reconstruct x without cardinality
assumption

e when does the ¢ heuristic (minimizing ||z||; subject to Az = y)
reconstruct = (exactly)?

Lund University, 24/8/2012
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recent results by Candes, Donoho, Romberg, Tao, . ..

e (for some choices of A) if m > (C'logn)k, ¢1 heuristic reconstructs x
exactly, with overwhelming probability

e (' is absolute constant: valid A's include

- Aij ~ N<0702>
— Ax gives Fourier transform of x at m frequencies, chosen from
uniform distribution
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Total variation reconstruction

o fit .o With piecewise constant 2, no more than k£ jumps

e convex-cardinality problem: minimize ||Z — zcor||2 Subject to
card(Dx) < k (D is first order difference matrix)

e heuristic: minimize || — Zcor||2 + 7v||Dx||1; vary v to adjust number of

jumps
e ||Dzx||; is total variation of signal &
e method is called total variation reconstruction

e unlike /5 based reconstruction, TVR filters high frequency noise out
while preserving sharp jumps

Lund University, 24/8/2012
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Example (§6.3.3 in BV book)

signal = € R?°" and corrupted signal z.,, € R**%

2 w x x
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Total variation reconstruction

for three values of ~
2 w w x

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000
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/5 reconstruction

for three values of ~
2

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000
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Example: 2D total variation reconstruction

e x € R" are values of pixels on N x N grid (N = 31, so n = 961)
e assumption: x has relatively few big changes in value (i.e., boundaries)
e we have m = 120 linear measurements, y = Fx (F;; ~ N(0,1))

e as convex-cardinality problem:

minimize card(x; ; — x;y1 ;) + card(z; ; — x; j11)
subject to y = Fx

e (1 heuristic (objective is a 2D version of total variation)

minimize Z’mi,j _xz'—l—l,j‘ +Z|$i,j _Zci,j+1|
subject to y = Fx
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TV reconstruction

TV reconstruction

origina

... not bad for 8x more variables than measurements!

37
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/5 reconstruction

¢5 reconstruction

original

... this is what you'd expect with 8 x more variables than measurements

38
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Iterated weighted /; heuristic

e to minimize card(x) over x € C

w:=1

repeat
minimize || diag(w)x||; over x € C
w; = 1/(€e + |x;])

e first iteration is basic ¢; heuristic
e increases relative weight on small z;
e typically converges in 5 or fewer steps

e often gives a modest improvement (i.e., reduction in card(z)) over
basic ¢1 heuristic
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Interpretation

e wlog we can take x = 0 (by writingx =2, —z_, x,,x_ = 0, and
replacing card(z) with card(z) + card(x_))

e we'll use approximation card(z) = log(1 + z/¢€), where ¢ > 0, z € R,
e using this approximation, we get (nonconvex) problem

minimize >  log(1 + z;/e)
subjectto z€(C, x>0

e we'll find a local solution by linearizing objective at current point,

;log(1+xi/6 Zlog 1+:1:( >/e +sz—m(

z1€+95

(k)
k)
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and solving resulting convex problem

minimize ) ., w;z;
subjectto z€(C, x>0

with w; = 1/(e + z;), to get next iterate

e repeat until convergence to get a local solution

Lund University, 24/8/2012
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Sparse solution of linear inequalities

e minimize card(x) over polyhedron {z | Az < b}, A € R??"*®0

e /1 heuristic finds z € R*® with card(z) = 44

e iterated weighted /1 heuristic finds x with card(z) = 36
(global solution, via branch & bound, is card(z) = 32)

50

40t
—~
&  30r
N—"
o)
S
® 20+
(&)
10+
— iterated /4
44
0 Il Il Il T~
1 2 3 4 5 6

iteration
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Detecting changes in time series model

e AR(2) scalar time-series model

y(t +2) = a(t)y(t+ 1) +b(t)y(t) +v(t), ov(t) ID N(0,0.5%)

e assumption: a(t) and b(t) are piecewise constant, change infrequently
o given y(t), t =1,...,T, estimate a(t), b(t), t=1,...,T — 2

e heuristic: minimize over variables a(t), b(t), t=1,...,T — 1

L2yt +2) — a(®y(t + 1) = b(t)y(t))?

T—2
+y 22— (la(t +1) —a(t)] + [b(t + 1) — b(t)])
e vary v to trade off fit versus number of changes in a, b
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Time series and true coefficients
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left: TV with v = 10;
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TV heuristic and iterated TV heuristic

right: iterated TV, 5 iterations, ¢ = 0.005
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Extension to matrices

e Rank is natural analog of card for matrices

e convex-rank problem: convex, except for Rank in objective or
constraints

e rank problem reduces to card problem when matrices are diagonal:
Rank(diag(x)) = card(x)

e analog of /; heuristic: use nuclear norm, || X||. =), 0:(X)
(sum of singular values; dual of spectral norm)

e for X = 0, reduces to Tr X (for z = 0, ||z||; reduces to 11z)
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Factor modeling

e given matrix ¥ € S”, find approximation of form > = FFT 4+ D, where
F € R"™", D is diagonal nonnegative

e gives underlying factor model (with r factors)

r=Fz+v, v~N(0,D), z~N(0,1I)

e model with fewest factors:

minimize Rank X
subject to X =0, D > 0 diagonal
X+DeC

with variables D, X € S™
C is convex set of acceptable approximations to X
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e c.g., via KL divergence

C={2] —logdet(X~Y22x"V3) L Tr("1282"Y2) —pn <€}

e trace heuristic:

minimize Tr X
subject to X =0, D > 0 diagonal
X+DecC

with variables d € R", X ¢ §"

Lund University, 24/8/2012
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Example
e r=Fz+uv z~N(0,I), v~N(0,D), D diagonal; F € R*"*?
e Y is empirical covariance matrix from N = 3000 samples

e set of acceptable approximations

C={Z[z73E -2 2| <8}

e trace heuristic

minimize Tr X
subjectto X >0, d>=0
[X712(X 4 diag(d) — )22 < B

Lund University, 24/8/2012



Trace approximation results

16

Rank(X)
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e for B = 0.1357 (knee of the tradeoff curve) we find

— / (range(X), range(FFT)) = 6.8°
= ||[d - diag(D)||/|| diag(D)|| = 0.07

e i.e., we have recovered the factor model from the empirical covariance
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Summary and conclusions

e convex-cardinality (and rank) problems arise in many applications
e these problems are hard (to solve exactly, in general)

e heuristics based on ¢; norm (or nuclear norm for rank)

— are convex, hence solvable
— give very good results in practice

e is basis of many well known methods
(lasso, SVM, compressed sensing, TV denoising, . . . )
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