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ℓ1-norm heuristics for cardinality problems

• cardinality problems arise often, but are hard to solve exactly

• a simple heuristic, that relies on ℓ1-norm, seems to work well

• used for many years, in many fields

– sparse design
– LASSO, robust estimation in statistics
– support vector machine (SVM) in machine learning
– total variation reconstruction in signal processing, geophysics
– compressed sensing

• recent theoretical results guarantee the method works, at least for a few
problems
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Cardinality

• the cardinality of x ∈ Rn, denoted card(x), is the number of nonzero
components of x

• card is separable; for scalar x, card(x) =

{

0 x = 0
1 x 6= 0

• card is quasiconcave on Rn
+ (but not Rn) since

card(x+ y) ≥ min{card(x), card(y)}

holds for x, y � 0

• but otherwise has no convexity properties

• arises in many problems
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General convex-cardinality problems

a convex-cardinality problem is one that would be convex, except for
appearance of card in objective or constraints

examples (with C, f convex):

• convex minimum cardinality problem:

minimize card(x)
subject to x ∈ C

• convex problem with cardinality constraint:

minimize f(x)
subject to x ∈ C, card(x) ≤ k
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Solving convex-cardinality problems

convex-cardinality problem with x ∈ Rn

• if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero)
we get a convex problem

• by solving 2n convex problems associated with all possible sparsity
patterns, we can solve convex-cardinality problem
(possibly practical for n ≤ 10; not practical for n > 15 or so . . . )

• general convex-cardinality problem is (NP-) hard

• can solve globally by branch-and-bound

– can work for particular problem instances (with some luck)
– in worst case reduces to checking all (or many of) 2n sparsity patterns
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Boolean LP as convex-cardinality problem

• Boolean LP:
minimize cTx
subject to Ax � b, xi ∈ {0, 1}

includes many famous (hard) problems, e.g., 3-SAT, traveling salesman

• can be expressed as

minimize cTx
subject to Ax � b, card(x) + card(1− x) ≤ n

since card(x) + card(1− x) ≤ n ⇐⇒ xi ∈ {0, 1}

• conclusion: general convex-cardinality problem is hard
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Sparse design

minimize card(x)
subject to x ∈ C

• find sparsest design vector x that satisfies a set of specifications

• zero values of x simplify design, or correspond to components that
aren’t even needed

• examples:

– FIR filter design (zero coefficients reduce required hardware)
– antenna array beamforming (zero coefficients correspond to unneeded

antenna elements)
– truss design (zero coefficients correspond to bars that are not needed)
– wire sizing (zero coefficients correspond to wires that are not needed)
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Sparse modeling / regressor selection

fit vector b ∈ Rm as a linear combination of k regressors (chosen from n
possible regressors)

minimize ‖Ax− b‖2
subject to card(x) ≤ k

• gives k-term model

• chooses subset of k regressors that (together) best fit or explain b

• can solve (in principle) by trying all

(

n
k

)

choices

• variations:

– minimize card(x) subject to ‖Ax− b‖2 ≤ ǫ
– minimize ‖Ax− b‖2 + λ card(x)
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Sparse signal reconstruction

• estimate signal x, given

– noisy measurement y = Ax+ v, v ∼ N (0, σ2I) (A is known; v is not)
– prior information card(x) ≤ k

• maximum likelihood estimate x̂ml is solution of

minimize ‖Ax− y‖2
subject to card(x) ≤ k
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Estimation with outliers

• we have measurements yi = aTi x+ vi + wi, i = 1, . . . ,m

• noises vi ∼ N (0, σ2) are independent

• only assumption on w is sparsity: card(w) ≤ k

• B = {i | wi 6= 0} is set of bad measurements or outliers

• maximum likelihood estimate of x found by solving

minimize
∑

i 6∈B(yi − aTi x)
2

subject to |B| ≤ k

with variables x and B ⊆ {1, . . . ,m}

• equivalent to
minimize ‖y −Ax− w‖22
subject to card(w) ≤ k
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Minimum number of violations

• set of convex inequalities

f1(x) ≤ 0, . . . , fm(x) ≤ 0, x ∈ C

• choose x to minimize the number of violated inequalities:

minimize card(t)
subject to fi(x) ≤ ti, i = 1, . . . ,m

x ∈ C, t ≥ 0

• determining whether zero inequalities can be violated is (easy) convex
feasibility problem
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Linear classifier with fewest errors

• given data (x1, y1), . . . , (xm, ym) ∈ Rn × {−1, 1}

• we seek linear (affine) classifier y ≈ sign(wTx+ v)

• classification error corresponds to yi(w
Tx+ v) ≤ 0

• to find w, v that give fewest classification errors:

minimize card(t)
subject to yi(w

Txi + v) + ti ≥ 1, i = 1, . . . ,m

with variables w, v, t (we use homogeneity in w, v here)
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Smallest set of mutually infeasible inequalities

• given a set of mutually infeasible convex inequalities
f1(x) ≤ 0, . . . , fm(x) ≤ 0

• find smallest (cardinality) subset of these that is infeasible

• certificate of infeasibility is g(λ) = infx(
∑m

i=1 λifi(x)) ≥ 1, λ � 0

• to find smallest cardinality infeasible subset, we solve

minimize card(λ)
subject to g(λ) ≥ 1, λ � 0

(assuming some constraint qualifications)
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Portfolio investment with linear and fixed costs

• we use budget B to purchase (dollar) amount xi ≥ 0 of stock i

• trading fee is fixed cost plus linear cost: β card(x) + αTx

• budget constraint is 1Tx+ β card(x) + αTx ≤ B

• mean return on investment is µTx; variance is xTΣx

• minimize investment variance (risk) with mean return ≥ Rmin:

minimize xTΣx
subject to µTx ≥ Rmin, x � 0

1Tx+ β card(x) + αTx ≤ B
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Piecewise constant fitting

• fit corrupted xcor by a piecewise constant signal x̂ with k or fewer jumps

• problem is convex once location (indices) of jumps are fixed

• x̂ is piecewise constant with ≤ k jumps ⇐⇒ card(Dx̂) ≤ k, where

D =









1 −1
1 −1

. . . . . .
1 −1









∈ R(n−1)×n

• as convex-cardinality problem:

minimize ‖x̂− xcor‖2
subject to card(Dx̂) ≤ k
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Piecewise linear fitting

• fit xcor by a piecewise linear signal x̂ with k or fewer kinks

• as convex-cardinality problem:

minimize ‖x̂− xcor‖2
subject to card(∇2x̂) ≤ k

where

∇2 =









−1 2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
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ℓ1-norm heuristic

• replace card(z) with γ‖z‖1, or add regularization term γ‖z‖1 to
objective

• γ > 0 is parameter used to achieve desired sparsity
(when card appears in constraint, or as term in objective)

• more sophisticated versions use
∑

iwi|zi| or
∑

iwi(zi)+ +
∑

i vi(zi)−,
where w, v are positive weights
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Example: Minimum cardinality problem

• start with (hard) minimum cardinality problem

minimize card(x)
subject to x ∈ C

(C convex)

• apply heuristic to get (easy) ℓ1-norm minimization problem

minimize ‖x‖1
subject to x ∈ C
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Example: Cardinality constrained problem

• start with (hard) cardinality constrained problem (f , C convex)

minimize f(x)
subject to x ∈ C, card(x) ≤ k

• apply heuristic to get (easy) ℓ1-constrained problem

minimize f(x)
subject to x ∈ C, ‖x‖1 ≤ β

or ℓ1-regularized problem

minimize f(x) + γ‖x‖1
subject to x ∈ C

β, γ adjusted so that card(x) ≤ k
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Polishing

• use ℓ1 heuristic to find x̂ with required sparsity

• fix the sparsity pattern of x̂

• re-solve the (convex) optimization problem with this sparsity pattern to
obtain final (heuristic) solution

Lund University, 24/8/2012 20



Interpretation as convex relaxation

• start with

minimize card(x)
subject to x ∈ C, ‖x‖∞ ≤ R

• equivalent to mixed Boolean convex problem

minimize 1Tz
subject to |xi| ≤ Rzi, i = 1, . . . , n

x ∈ C, zi ∈ {0, 1}, i = 1, . . . , n

with variables x, z
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• now relax zi ∈ {0, 1} to zi ∈ [0, 1] to obtain

minimize 1Tz
subject to |xi| ≤ Rzi, i = 1, . . . , n

x ∈ C
0 ≤ zi ≤ 1, i = 1, . . . , n

which is equivalent to

minimize (1/R)‖x‖1
subject to x ∈ C

the ℓ1 heuristic

• optimal value of this problem is lower bound on original problem
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Interpretation via convex envelope

• convex envelope f env of a function f on set C is the largest convex
function that is an underestimator of f on C

• epi(f env) = Co(epi(f))

• f env = (f∗)∗ (with some technical conditions)

• for x scalar, |x| is the convex envelope of card(x) on [−1, 1]

• for x ∈ Rn, (1/R)‖x‖1 is convex envelope of card(x) on
{z | ‖z‖∞ ≤ R}
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Weighted and asymmetric ℓ1 heuristics

• minimize card(x) over convex set C

• suppose we know lower and upper bounds on xi over C

x ∈ C =⇒ li ≤ xi ≤ ui

(best values for these can be found by solving 2n convex problems)

• if ui < 0 or li > 0, then card(xi) = 1 (i.e., xi 6= 0) for all x ∈ C

• assuming li < 0, ui > 0, convex relaxation and convex envelope
interpretations suggest using

n
∑

i=1

(

(xi)+
ui

+
(xi)−
−li

)

as surrogate (and also lower bound) for card(x)
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Regressor selection

minimize ‖Ax− b‖2
subject to card(x) ≤ k

• heuristic:

– minimize ‖Ax− b‖2 + γ‖x‖1
– find smallest value of γ that gives card(x) ≤ k
– fix associated sparsity pattern (i.e., subset of selected regressors) and

find x that minimizes ‖Ax− b‖2
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Example (6.4 in BV book)

• A ∈ R10×20, x ∈ R20, b ∈ R10

• dashed curve: exact optimal (via enumeration)

• solid curve: ℓ1 heuristic with polishing
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Sparse signal reconstruction

• convex-cardinality problem:

minimize ‖Ax− y‖2
subject to card(x) ≤ k

• ℓ1 heuristic:
minimize ‖Ax− y‖2
subject to ‖x‖1 ≤ β

(called LASSO)

• another form: minimize ‖Ax− y‖2 + γ‖x‖1
(called basis pursuit denoising)
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Example

• signal x ∈ Rn with n = 1000, card(x) = 30

• m = 200 (random) noisy measurements: y = Ax+ v, v ∼ N (0, σ21),
Aij ∼ N (0, 1)

• left: original; right: ℓ1 reconstruction with γ = 10−3
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• ℓ2 reconstruction; minimizes ‖Ax− y‖2 + γ‖x‖2, where γ = 10−3

• left: original; right: ℓ2 reconstruction
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Some recent theoretical results

• suppose y = Ax, A ∈ Rm×n, card(x) ≤ k

• to reconstruct x, clearly need m ≥ k

• if m ≥ n and A is full rank, we can reconstruct x without cardinality
assumption

• when does the ℓ1 heuristic (minimizing ‖x‖1 subject to Ax = y)
reconstruct x (exactly)?
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recent results by Candès, Donoho, Romberg, Tao, . . .

• (for some choices of A) if m ≥ (C log n)k, ℓ1 heuristic reconstructs x
exactly, with overwhelming probability

• C is absolute constant; valid A’s include

– Aij ∼ N (0, σ2)
– Ax gives Fourier transform of x at m frequencies, chosen from

uniform distribution
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Total variation reconstruction

• fit xcor with piecewise constant x̂, no more than k jumps

• convex-cardinality problem: minimize ‖x̂− xcor‖2 subject to
card(Dx) ≤ k (D is first order difference matrix)

• heuristic: minimize ‖x̂− xcor‖2 + γ‖Dx‖1; vary γ to adjust number of
jumps

• ‖Dx‖1 is total variation of signal x̂

• method is called total variation reconstruction

• unlike ℓ2 based reconstruction, TVR filters high frequency noise out
while preserving sharp jumps
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Example (§6.3.3 in BV book)

signal x ∈ R2000 and corrupted signal xcor ∈ R2000
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Total variation reconstruction

for three values of γ
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ℓ2 reconstruction

for three values of γ
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Example: 2D total variation reconstruction

• x ∈ Rn are values of pixels on N ×N grid (N = 31, so n = 961)

• assumption: x has relatively few big changes in value (i.e., boundaries)

• we have m = 120 linear measurements, y = Fx (Fij ∼ N (0, 1))

• as convex-cardinality problem:

minimize card(xi,j − xi+1,j) + card(xi,j − xi,j+1)
subject to y = Fx

• ℓ1 heuristic (objective is a 2D version of total variation)

minimize
∑

|xi,j − xi+1,j|+
∑

|xi,j − xi,j+1|
subject to y = Fx
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TV reconstruction
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. . . not bad for 8× more variables than measurements!
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ℓ2 reconstruction
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. . . this is what you’d expect with 8× more variables than measurements
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Iterated weighted ℓ1 heuristic

• to minimize card(x) over x ∈ C

w := 1

repeat
minimize ‖diag(w)x‖1 over x ∈ C
wi := 1/(ǫ+ |xi|)

• first iteration is basic ℓ1 heuristic

• increases relative weight on small xi

• typically converges in 5 or fewer steps

• often gives a modest improvement (i.e., reduction in card(x)) over
basic ℓ1 heuristic
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Interpretation

• wlog we can take x � 0 (by writing x = x+ − x−, x+, x− � 0, and
replacing card(x) with card(x+) + card(x−))

• we’ll use approximation card(z) ≈ log(1 + z/ǫ), where ǫ > 0, z ∈ R+

• using this approximation, we get (nonconvex) problem

minimize
∑n

i=1 log(1 + xi/ǫ)
subject to x ∈ C, x � 0

• we’ll find a local solution by linearizing objective at current point,

n
∑

i=1

log(1 + xi/ǫ) ≈
n
∑

i=1

log(1 + x
(k)
i /ǫ) +

n
∑

i=1

xi − x
(k)
i

ǫ+ x
(k)
i
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and solving resulting convex problem

minimize
∑n

i=1wixi

subject to x ∈ C, x � 0

with wi = 1/(ǫ+ xi), to get next iterate

• repeat until convergence to get a local solution
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Sparse solution of linear inequalities

• minimize card(x) over polyhedron {x | Ax � b}, A ∈ R100×50

• ℓ1 heuristic finds x ∈ R50 with card(x) = 44

• iterated weighted ℓ1 heuristic finds x with card(x) = 36
(global solution, via branch & bound, is card(x) = 32)
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Detecting changes in time series model

• AR(2) scalar time-series model

y(t+ 2) = a(t)y(t+ 1) + b(t)y(t) + v(t), v(t) IID N (0, 0.52)

• assumption: a(t) and b(t) are piecewise constant, change infrequently

• given y(t), t = 1, . . . , T , estimate a(t), b(t), t = 1, . . . , T − 2

• heuristic: minimize over variables a(t), b(t), t = 1, . . . , T − 1

∑T−2
t=1 (y(t+ 2)− a(t)y(t+ 1)− b(t)y(t))2

+γ
∑T−2

t=1 (|a(t+ 1)− a(t)|+ |b(t+ 1)− b(t)|)

• vary γ to trade off fit versus number of changes in a, b
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Time series and true coefficients
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TV heuristic and iterated TV heuristic

left: TV with γ = 10; right: iterated TV, 5 iterations, ǫ = 0.005
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Extension to matrices

• Rank is natural analog of card for matrices

• convex-rank problem: convex, except for Rank in objective or
constraints

• rank problem reduces to card problem when matrices are diagonal:
Rank(diag(x)) = card(x)

• analog of ℓ1 heuristic: use nuclear norm, ‖X‖∗ =
∑

i σi(X)
(sum of singular values; dual of spectral norm)

• for X � 0, reduces to TrX (for x � 0, ‖x‖1 reduces to 1Tx)
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Factor modeling

• given matrix Σ ∈ Sn
+, find approximation of form Σ̂ = FFT +D, where

F ∈ Rn×r, D is diagonal nonnegative

• gives underlying factor model (with r factors)

x = Fz + v, v ∼ N (0, D), z ∼ N (0, I)

• model with fewest factors:

minimize RankX
subject to X � 0, D � 0 diagonal

X +D ∈ C

with variables D, X ∈ Sn

C is convex set of acceptable approximations to Σ
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• e.g., via KL divergence

C = {Σ̂ | − log det(Σ−1/2Σ̂Σ−1/2) +Tr(Σ−1/2Σ̂Σ−1/2)− n ≤ ǫ}

• trace heuristic:

minimize TrX
subject to X � 0, D � 0 diagonal

X +D ∈ C

with variables d ∈ Rn, X ∈ Sn
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Example

• x = Fz + v, z ∼ N (0, I), v ∼ N (0, D), D diagonal; F ∈ R20×3

• Σ is empirical covariance matrix from N = 3000 samples

• set of acceptable approximations

C = {Σ̂ | ‖Σ−1/2(Σ̂− Σ)Σ−1/2‖ ≤ β}

• trace heuristic

minimize TrX
subject to X � 0, d � 0

‖Σ−1/2(X + diag(d)− Σ)Σ−1/2‖ ≤ β
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Trace approximation results
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• for β = 0.1357 (knee of the tradeoff curve) we find

– 6
(

range(X), range(FFT )
)

= 6.8◦

– ‖d− diag(D)‖/‖diag(D)‖ = 0.07

• i.e., we have recovered the factor model from the empirical covariance
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Summary and conclusions

• convex-cardinality (and rank) problems arise in many applications

• these problems are hard (to solve exactly, in general)

• heuristics based on ℓ1 norm (or nuclear norm for rank)

– are convex, hence solvable
– give very good results in practice

• is basis of many well known methods
(lasso, SVM, compressed sensing, TV denoising, . . . )
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