Code Generation for Embedded Convex Optimization

Jacob Mattingley and Stephen Boyd

Stanford University

Lund University, 22/8/2012

Convex optimization

- Problems solvable reliably and efficiently
- Widely used in scheduling, finance, engineering design
- Solve every few minutes or seconds

Code generation for embedded convex optimization

Replace 'minutes' with 'milliseconds' and eliminate failure

Agenda

- I. Introduction to embedded convex optimization and CVXGEN
- II. Demonstration of CVXGEN
- III. Techniques for constructing fast, robust solvers
- IV. Verification of technical choices
- V. Final notes and conclusions

Part I: Introduction

- 1. Embedded convex optimization
- 2. Embedded solvers
- 3. CVXGEN

Embedded convex optimization: Requirements

Embedded solvers must have:

- Time limit, sometimes strict, in milliseconds or microseconds
- Simple footprint for portability and verification
- No failures, even with somewhat poor data

Embedded convex optimization: Exploitable features

Embedded solvers can exploit:

- Modest accuracy requirements
- Fixed dimensions, sparsity, structure
- Repeated use
- Custom design in pre-solve phase

Embedded convex optimization: Applications

- Signal processing, model predictive control
- Fast simulations, Monte Carlo
- Low power devices
- Sequential QP, branch-and-bound

Embedded convex optimization: Pre-solve phase

Part I: Introduction

Embedded convex optimization: Pre-solve phase

Part I: Introduction

CVXGEN

- Code generator for embedded convex optimization
- Mattingley, Boyd
- Disciplined convex programming input
- Targets small QPs in flat, library-free C

Part II: Demonstration

- 1. Manipulating optimization problems with CVXGEN
- 2. Generating and using solvers
- 3. Important hidden details

CVXGEN: Problem specification

vxgen: Initial example - saved a moment ago - no errors - no codegen jem@ PROBLEM 1 # Welcose to crxgen. edit 2 # Here's a sample problem to get you started. diamesions 3 stad form 9 e parameters 9 generate C 11 c (n) 12 edit 12 edit 3 diamesions 9 stad form 9 9 parameters 9 10 b (8) 12 edit 11 c (n) 13 edit 12 edit 13 extrables 13 statistics 19 c'nx + norm((x)) 13 edit 10 b (3) 14 statistics 19 c'nx + norm((x)) 15 edit 10 b (3) 16 edit 10 b (3) 17 statistics 19 c'nx + norm((x)) 18 edit 10 b (3) 19 c'nx + norm((x)) 10 b (3) 10 a condition 10 b (3) 10 b (3) 10 b (3) 11 a condition 10 b (3) 12 edit 10 b (3) 13 edit 10 b (3) 14 attrabular 10 b (3) 15 edit 10 b (3) 16 edit 10 b (3) 17 edit 10 b (3) 18 edit 10 b (3)			cvxgen: initial example		00
PROBLEM # # Welcome to cvxgen. addit # # Were's a sample problem to get you started. additestion # # Here's a sample problem to get you started. idianestica # an = 10 cobsect 9 A (0,n) generate C 9 A (0,n) idianestica 10 b (8) idianestica 10 c (n) idianestica 10 b (8) idianestica 10 c (n)	m@cvxgen.con	jem@cv	ent ago · no errors · no codegen	example · saved a mome	xgen: initial e
edit 2 # Pere's a sample problem to get you started. view 4 dimensions 4 dimensions 6 mersions std form 9 mersions cobecen 9 A (\$_n) generate 9 A (\$_n) mattab 4 (\$_n) distributes 11 c (n) generate 12 end mattab 15 x (n) 16 end 17 18 infizize 19 c'+x + norm1(x) 30 subject to 2 Axx = b 32 end 33 end tatex spec 14 x= -1 iatex math 2 Axx = b cvxmod 2 and orther tools 2 and				1 # Welcome to cvxgen.	PROBLEM
view - dimensions std form - end - parameters			oblem to get you started.	2 # Here's a sample pr	edit
std form 5 n = 19 std form 6 end parameters 10 6(an) generate C 10 6(an) generate C 12 end matlab 14 variables 15 x (n) 20 abject statistics 19 c*x + norn1(x) 20 subject 22 21 A*x == b 22 x >= 1 22 x >= 1 23 end statistics 10 14 variables 15 x (n) 16 end 17 absolute 18 absolute 14 variables 15 x = b 22 x >= -1 23 end 14 cvx cvxmod absolute				4 dimensions	view
std form				5 n = 10	view
a paraeters concern a generate C i = c (n) generate C i = c (n) matiab i < variables				7	std form
code generate C 1 etc. ft. generate C 1 etc. ft. ft. mattab 1 etc. ft. ft. ft. mattab 1 etc. ft. ft. ft. ft. code info 1 etc. ft.				8 parameters	
generate C 11 c (n) matiab 13 variables 13 variables 13 variables 14 variables 13 variables 15 variables 10 variables 16 variables 10 variables 17 variables 10 variables 18 variables 10 variables 19 variables 10 variables 10 variables 10 variables 10 variables 10 variables 11 variables 10 variables 19 variables 10 variables 10 variables 10 variables 11 variables 11 variables 10 variables 10 va				9 A (8,n) 10 b (8)	CODEGEN
generate C 12 end matlab 4 variables 14 variables 15 x (n) 15 x (n) 16 ninisize statistics 19 C'*x + norn1(x) 20 subject to 20 subject to 20 subject to 20 subject to 21 A*x = b 22 x >= 1 22 end THER OUTPUT THER OUTPUT Iatex spec Iatex math cvx cvxmod OTHER TOOLS user's guide				11 c (n)	
mattab i 4 variables i 5 x (n) i 5 x (n) i 6 end i 7 statistics i 6 end i 8 infinize i 9 chixt + norm1(x) i 9 chixt + norm1(x) i 9 subject to i 9 chixt + norm1(x) i 9 subject to i 9 chixt + norm1(x) i 9 subject to i 10 end i 10 end i 10 end i 10 end </td <td></td> <td></td> <td></td> <td>12 end</td> <td>generate C</td>				12 end	generate C
cope into 15 x (n) statistics 16 end 17 17 statistics 19 c ¹ xx + noral(x) 0 subject to 21 Ax x = b 22 x x = -1 22 end 1atex spec 10 end latex math cvx cvxmod 10 end				14 variables	matlab
code INFO 10 end statistics 19 endisista statistics 19 endisista coubject of 21 Ask == 0 22 x >= -1 22 end latex spec latex math cvx cvxmod				15 x (n)	
statistics 30 c'*x + norm(x) 20 subject to 21 Arx == b 22 Arx == b 22 cmd HER OUTPUT latex spec latex math cvx cvxmod STHER TOOLS user's guide				16 end 17	CODE INFO
sudvists 30 c *x + norm1(x) 20 subject 20 s				18 minimize	statistics
kkt sparsity 2: A:x == 0 3: A:x == 0 3: A:x == 0 3: A:x == 0 3: A:x == 0 <t< td=""><td></td><td></td><td></td><td>19 c'*x + norm1(x) 20 subject to</td><td>statistics</td></t<>				19 c'*x + norm1(x) 20 subject to	statistics
22 x >= -1 23 end 14tex spec 1atex math cvx cvxmod other tools user's guide				21 A*x == b	kkt sparsity
THER OUTPUT latex spec latex math evx cvxmod OTHER TOOLS user's guide				22 x >= -1	
latex spec latex math evx evxmod onHER TooLS user's guide				23 end	THER OUTPUT
latex math cvx cvxmod other tools user's guide					latex spec
cvx cvxmod OTHER TOOLS user's guide					latex math
cvxmod DTHER TOOLS user's guide					cvx
other tools user's guide					cyrmod
OTHER TOOLS user's guide					coxiniou
user's guide					OTHER TOOLS
user's guide					
					user's guide
report a bug					report a bug

CVXGEN: Automatic checking

Cvxgen: initial example				
xgen: initial o	example · saved a minute ago · 1 error · no codegen		jem@cvxgen.com	
PROBLEM	1 # Welcome to cvxgen.	19 objective must be convex.		
edit	2 # Here's a sample problem to get you started.			
view	4 dimensions 5 n = 10			
std form	6 end 7			
CODEGEN	8 parameters 9 A (8,n) 10 b (8)			
generate C	11 C (n) 12 end			
matlab	13 14 variables 15 x (n)			
CODE INFO	16 end			
statistics	19 c'*x + norm1(x) - (1/10)*norminf(x)			
kkt sparsity	20 subject to 21 A*x == b 22 x >= -1			
THER OUTPUT	23 end			
latex spec				
latex math				
cvx				
cvxmod				
OTHER TOOLS				
user's quide				
ase. s guide				
report a bug				

CVXGEN: Formatted problem statement

00	cvxgen: initial example	
cvxgen: initial	example · saved a moment ago · no errors · no codegen	jem@cvxgen.com
PROBLEM	Problem statement	
edit	minimize $c^T x + x _1$	
view	subject to $Ax = b$	
std form	$x \ge -1$	
	Parameters	
CODEGEN	$A \in \mathbf{R}^{8 imes 10}$, $b \in \mathbf{R}^{8}$, $c \in \mathbf{R}^{10}$	
generate C		
matlab	Optimization variables	
	$x \in \mathbf{R}^{10}$	
CODE INFO		
statistics		
kkt sparsity		
OTHER OUTPUT		
latex spec		
latex math		
cvx		
cvxmod		
OTHER TOOLS		
user's guide		
report a bug		
		//

CVXGEN: Single-button code generation

000	cvxgen: initial example	
vxgen: initial e	xample · saved a moment ago · no errors · no codegen	jem@cvxgen.co
PROBLEM	Problem size	
edit	Your problem has 306 non-zero KKT matrix entries, which is relatively few. Code generati	on should be relatively
view	fast.	
std form	(evagen is best for optimization problems that up to around 2000 charles.)	
	Code generation status	
CODEGEN	You have not generated code for this problem.	
generate C	Generate code	
matlab		
CODE INFO		
statistics		
kkt sparsity		
THER OUTPUT		
latex spec		
latex math		
CVX		
cvxmod		
UTHER TOOLS		
user's guide		
report a bug		

CVXGEN: Completed code generation

00		cvxgen: i	nitial example		
gen: initial e	example · saved a minute	ago · no errors · i	up-to-date codegen		jem@cvxgen.cor
PROBLEM	Problem size				
edit	Your problem has 306 no	n-zero KKT matrix e	ntries, which is relatively f	ew. Code gen	eration should be relatively
view	fast.				
	(cvxgen is best for optim	ization problems wit	h up to around 2000 entries	s.)	
sta form	Code generation statu	IS			
CODEGEN	You generated code a mo	ment and The code	matches the problem state	ment	
concrete C		mene ago: me coae	indenes the prostern state		
generate c	Generate code again				
matlab	Generated files				
	cvxgen.zip	complete	download zip	26 k	
CODE INFO	cvxgen.tar.gz	complete	download tar	23 k	
statistics	Makefile	complete	preview · download	1 k	
kkt sparsity	csolve.c	complete	preview · download	6 k	
	csolve.m	complete	preview · download	1 k	
HER OUTPUT	cvxsolve.m	complete	preview · download	1 k	
latex spec	ldl.c	complete	preview · download	89 k	
latex math	make_csolve.m	complete	preview · download	1 k	
CVX	matrix_support.c	complete	preview · download	8 k	
	solver.c	complete	preview · download	8 k	
cvxmod	solver.h	complete	preview · download	4 k	
	testsolver.c	complete	preview · download	5 k	
OTHER TOOLS	util.c	complete	preview · download	3 k	
user's quide					
user s guide					

CVXGEN: Fast, problem-specific code

kgen: initi	al example · saved a minute ag	no errors -	up-to-date codegen	 jem@cvxgen.c
	preview of solver.c			close 🥥
	<pre>// Produced by cvxgen, 2010-08 // cvxgen is Copyright (C) 2000</pre>	-16 11:27:13 -070 5-2010 Jacob Matt	0. ingley, jem@cvxgen.com.	
	<pre>// Filename: solver.c. // Description: Main solver fi</pre>	le.		
	#include "solver.h"			
	<pre>void set_defaults(void) { settings.resid_tol = 1e-6; settings.eps = 1e-4;</pre>			
	<pre>settings.max_iters = 25; settings.refine steps = 1;</pre>			
	cvxgen.tar.gz			
	<pre>settings.s_init = 1; settings.s_init = 1;</pre>			
	settings.debug = 0;			
	<pre>settings.verbose = 1;</pre>	complete		
	cvxsolve.m	complete		
	<pre>settings.kkt_reg = 1e-7;</pre>			
	make_csolve.m			
	<pre>double eval_gap(void) { int it</pre>			
	double gap;			
	solver h			-
	for (i = 0; i < 30; i++)			Ť

CVXGEN: Automatic problem transformations

CVXGEN: Automatically generated Matlab interface

00	cvxgen: initial example	
cvxgen: initial	example - saved a minute ago - no errors - up-to-date codegen jem@cv.	xgen.com
PROBLEM	Follow these instructions to download and build a Matlab mex solver.	
edit	Step 1: Download the build script	
view	······································	
std form	You only need this step once, to put cvxgen.m in your current directory or Matlab path.	
	Copy to clipboard and paste into Matlab.	
CODEGEN	<pre>urlwrite('http://cvxgen.stanford.edu/download/cvxgen.m', 'cvxgen.m');</pre>	
generate C		
matlab	Step 2: Download custom code for this problem	
	Use this code for one-step download and build of a custom mex solver in Matlab.	
cobe INFO	Copy to clipboard and paste into Matlab.	
lit energite	cvxgen(368256)	
KKL Sparsity		
OTHER OUTPUT		
latex spec		
latex math		
cvx		
cvxmod		
OTHER TOOLS		
user's guide		
report a bug		

Important hidden details

Important details not seen in demonstration:

- Extremely high speeds
- Bounded computation time
- Algorithm robustness

Part III: Techniques

- 1. Transformation to canonical form
- 2. Interior-point algorithm
- 3. Solving the KKT system
 - Permutation
 - Regularization
 - Factorization
 - Iterative refinement
 - Eliminating failure
- 4. Code generation

Transformation to canonical form

- Problem description uses high-level langauge
- Solve problems in canonical form: with variable $x \in \mathbf{R}^n$,

minimize $(1/2)x^TQx + q^Tx$ subject to $Gx \leq h$, Ax = b

- Transform high-level description to canonical form automatically:
 - 1. Expand convex functions via epigraphs.
 - 2. Collect optimization variables into single vector variable.
 - 3. Shape parameters into coefficient matrices and constants.
 - 4. Replace certain products with more efficient pre-computations.
- Generate code for forwards, backwards transformations

Transformation to canonical form: Example

• Example problem in original form with variables *x*, *y*:

minimize $x^TQx + c^Tx + \alpha ||y||_1$ subject to $A(x-b) \leq 2y$

• After epigraphical expansion, with new variable *t*:

minimize $x^TQx + c^Tx + \alpha \mathbf{1}^T t$ subject to $A(x-b) \leq 2y, \quad -t \leq y \leq t$

After reshaping variables and parameters into standard form:

$$\begin{array}{ll} \text{minimize} & \begin{bmatrix} x \\ y \\ t \end{bmatrix}^T \begin{bmatrix} Q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ t \end{bmatrix} + \begin{bmatrix} c \\ \alpha 1 \\ 0 \end{bmatrix}^T \begin{bmatrix} x \\ y \\ t \end{bmatrix}$$
$$\text{subject to} & \begin{bmatrix} A & -2I & 0 \\ 0 & -I & -I \\ 0 & I & I \end{bmatrix} \begin{bmatrix} x \\ y \\ t \end{bmatrix} \leqslant \begin{bmatrix} Ab \\ 0 \\ 0 \end{bmatrix}$$

Solving the standard-form QP

- Standard primal-dual interior-point method with Mehrotra correction
- ▶ Reliably solve to high accuracy in 5–25 iterations
- Mehrotra '89, Wright '97, Vandenberghe '09

Algorithm

Initialize via least-squares. Then, repeat:

- 1. Stop if the residuals and duality gap are sufficiently small.
- 2. Compute affine scaling direction by solving

$$\begin{bmatrix} Q & 0 & G^T & A^T \\ 0 & Z & S & 0 \\ G & I & 0 & 0 \\ A & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x^{\text{aff}} \\ \Delta s^{\text{aff}} \\ \Delta y^{\text{aff}} \end{bmatrix} = \begin{bmatrix} -(A^Ty + G^Tz + Px + q) \\ -Sz \\ -(Gx + s - h) \\ -(Ax - b) \end{bmatrix}.$$

3. Compute centering-plus-corrector direction by solving

$$\begin{bmatrix} Q & 0 & G^T & A^T \\ 0 & Z & S & 0 \\ G & I & 0 & 0 \\ A & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x^{cc} \\ \Delta s^{cc} \\ \Delta z^{cc} \\ \Delta y^{cc} \end{bmatrix} = \begin{bmatrix} 0 \\ \sigma \mu \mathbf{1} - \mathbf{diag}(\Delta s^{aff}) \Delta z^{aff} \\ 0 \end{bmatrix},$$

with

$$\begin{split} \boldsymbol{\mu} &= s^{T} z / p \qquad \boldsymbol{\sigma} = \left((s + \alpha \Delta s^{\mathrm{aff}})^{T} (z + \alpha \Delta z^{\mathrm{aff}}) / (s^{T} z) \right)^{3} \\ \boldsymbol{\alpha} &= \sup\{\boldsymbol{\alpha} \in [0, 1] \mid s + \alpha \Delta s^{\mathrm{aff}} \geqslant 0, \ z + \alpha \Delta z^{\mathrm{aff}} \geqslant 0 \} \end{split}$$

Part III: Techniques

.

Algorithm (continued)

4. Combine the updates with

$$\begin{split} \Delta x &= \Delta x^{\rm aff} + \Delta x^{\rm cc} \qquad \Delta s &= \Delta s^{\rm aff} + \Delta s^{\rm cc} \\ \Delta y &= \Delta y^{\rm aff} + \Delta y^{\rm cc} \qquad \Delta z &= \Delta z^{\rm aff} + \Delta z^{\rm cc} \end{split} .$$

5. Find

$$\alpha = \min\{1, \ 0.99 \sup\{\alpha \ge 0 \mid s + \alpha \Delta s \ge 0, \ z + \alpha \Delta z \ge 0\}\},\$$

and update

$$\begin{aligned} x &:= x + \alpha \Delta x \qquad s &:= s + \alpha \Delta s \\ y &:= y + \alpha \Delta y \qquad z &:= z + \alpha \Delta z \end{aligned}$$

٠

Solving KKT system

- Most computation effort, typically 80%, is solution of KKT system
- Each iteration requires two solves with (symmetrized) KKT matrix

$$K = \begin{bmatrix} Q & 0 & G^T & A^T \\ 0 & S^{-1}Z & I & 0 \\ \hline G & I & 0 & 0 \\ A & 0 & 0 & 0 \end{bmatrix}$$

- Quasisemidefinite: block diagonals PSD, NSD
- ▶ Use permuted *LDL^T* factorization with diagonal *D*, unit lower-triangular *L*

Solving KKT system: Permutation issues

- Factorize $PKP^T = LDL^T$, with permutation matrix P
- L, D unique, if they exist
- ▶ *P* determines nonzero count of *L*, thus computation time
- Standard method: choose P at solve time
 - Uses numerical values of K
 - Maintains stability
 - Slow (complex data structures, branching)
- CVXGEN: choose P at development time
 - Factorization does not even exist, for some P
 - Even if factorization exists, stability highly dependent on P
 - How do we fix this?

Solving KKT system: Regularization

- Use regularized KKT system \tilde{K} instead
- Choose regularization constant $\epsilon > 0$, then instead factor:

$$P\left(\begin{bmatrix} Q & 0 & | G^T & A^T \\ 0 & S^{-1}Z & I & 0 \\ \hline G & I & 0 & 0 \\ A & 0 & | 0 & 0 \end{bmatrix} + \begin{bmatrix} \epsilon I & 0 \\ \hline 0 & -\epsilon I \end{bmatrix}\right)P^T = P\widetilde{K}P^T = LDL^T$$

- \widetilde{K} now quasidefinite: block diagonals PD, ND
- Factorization always exists (Gill et al, '96)

Solving KKT system: Selecting the permutation

- Select P at development time to minimize nonzero count of L
- Simple greedy algorithm:

Create an undirected graph from \tilde{K} .

While nodes remain, repeat:

- 1. For each uneliminated node, calculate the fill-in if it were eliminated next.
- 2. Eliminate the node with lowest induced fill-in.
- ▶ Can prove that *P* determines signs of *D_{ii}* (will come back to this)

Solving KKT system: Solution

• Algorithm requires two solutions ℓ with different residuals r, of

$$K\ell = r$$

Instead, solve

$$\ell = \widetilde{K}^{-1}r = P^{T}L^{-T}D^{-1}L^{-1}Pr$$

- Use cached factorization, forward- and backward-substitution
- But: solution to wrong system
- Use iterative refinement

Solving KKT system: Iterative refinement

- Want solution to $K\ell = r$, only have operator $\widetilde{K}^{-1} \approx K^{-1}$
- Use iterative refinement:

Solve $\widetilde{K}\ell^{(0)} = r$.

Want correction $\delta \ell$ such that $K(\ell^{(0)} + \delta \ell) = r$. Instead:

- 1. Compute approximate correction by solving $\tilde{K}\delta\ell^{(0)} = r K\ell^{(0)}$.
- 2. Update iterate $\ell^{(1)} = \ell^{(0)} + \delta \ell^{(0)}$.
- 3. Repeat until $\ell^{(k)}$ is sufficiently accurate.
- Iterative refinement with \tilde{K} provably converges
- CVXGEN uses only one refinement step

Solving KKT system: Eliminating failure

- Regularized factorization cannot fail with exact arithmetic
- Numerical errors can still cause divide-by-zero exceptions
- Only divisions in algorithm are by D_{ii}
- ▶ Factorization computes $\hat{D}_{ii} \neq D_{ii}$, due to numerical errors
- Therefore, given sign ξ_i of D_{ii} , use

$$D_{ii} = \xi_i((\xi_i \widehat{D}_{ii})_+ + \epsilon)$$

- Makes division 'safe'
- Iterative refinement still provably converges

Code generation

- Code generation converts symbolic representation to compilable code
- Use templates [color key: C code, control code, C substitutions]

```
void kkt_multiply(double *result, double *source) {
    - kkt.rows.times do |i|
    result[#{i}] = 0;
    - kkt.neighbors(i).each do |j|
        - if kkt.nonzero? i, j
        result += #{kkt[i,j]}*source[#{j}];
}
```

Generate extremely explicit code

Code generation: Extremely explicit code

Embedded constants, exposed for compiler optimizations:

```
// r3 = -Gx - s + h.
multbymG(r3, x);
for (i = 0; i < 36; i++)
r3[i] += -s[i] + h[i];</pre>
```

Computing single entry in factorization:

Parameter stuffing:

```
b[4] = params.A[4]*params.x_0[0] + params.A[9]*params.x_0[1]
+ params.A[14]*params.x_0[2] + params.A[19]*params.x_0[3]
+ params.A[24]*params.x_0[4];
```

Part IV: Verification

- 1. Computation speed
- 2. Reliability

Computation speeds

- Maximum execution time more relevant than average
- Test millions of problem instances to verify performance

Computation speeds: Examples

	Scheduling	Battery	Suspension
Variables	279	153	104
Constraints	465	357	165
CVX, Intel i7	4.2 s	1.3 s	2.6 s

Computation speeds: Examples

	Scheduling	Battery	Suspension
Variables	279	153	104
Constraints	465	357	165
CVX, Intel i7	4.2 s	1.3 s	2.6 s
CVXGEN, Intel i7	850 μs	360 µs	110 μs

Computation speeds: Examples

	Scheduling	Battery	Suspension
Variables	279	153	104
Constraints	465	357	165
CVX, Intel i7	4.2 s	1.3 s	2.6 s
CVXGEN, Intel i7	850 μs	360 µs	110 µs
CVXGEN, Atom	7.7 ms	4.0 ms	1.0 ms

Reliability testing

- Analyzed millions of instances from many problem families
- Goal: tune algorithm for total reliability, high speed
- Investigated:
 - > Algorithms: primal-barrier, primal-dual, primal-dual with Mehrotra
 - Initialization methods including two-phase, infeasible-start, least-squares
 - Regularization and iterative refinement
 - > Algebra: dense, library-based, sparse, flat; all with different solution methods
 - Code generation, using profiling to compare strategies
 - Compiler integration, using profiling and disassembly

Reliability testing: Example

- Computation time proportional to iteration count
- Thus, simulate many instances and record iteration count
- Example: l_1 -norm minimization with box constraints

Reliability testing: Example

- Computation time proportional to iteration count
- Thus, simulate many instances and record iteration count
- Example: l_1 -norm minimization with box constraints
- Iteration count with default settings:

Reliability testing: No KKT regularization

• Default regularization, $\epsilon = 10^{-7}$

Part IV: Verification

Reliability testing: Decreased KKT regularization

• Default regularization, $\epsilon = 10^{-7}$

• Decreased regularization, $\epsilon = 10^{-11}$

Reliability testing: Increased KKT regularization

• Default regularization, $\epsilon = 10^{-7}$

• Increased regularization, $\epsilon = 10^{-2}$

Part IV: Verification

Reliability testing: Iterative refinement

• Default of 1 iterative refinement step, with $\varepsilon = 10^{-2}$

• Increased to 10 iterative refinement steps, with $\epsilon = 10^{-2}$

Reliability testing: Summary

- Regularization and iterative refinement allow reliable solvers
- Iteration count relatively insensitive to parameters

Part V: Final notes

- 1. Conclusions
- 2. Contributions
- 3. Extensions
- 4. Publications

Conclusions

Contributions

- Framework for embedded convex optimization
- Design and demonstration of reliable algorithms
- First application of code generation to convex optimization

CVXGEN

- Fastest solvers ever written
- Already in use

Extensions

- Blocking, for larger problems
- More general convex families
- Different hardware

Publications

- CVXGEN: A Code Generator for Embedded Convex Optimization, J. Mattingley and S. Boyd, *Optimization and Engineering*, 2012
- Receding Horizon Control: Automatic Generation of High-Speed Solvers, J. Mattingley, Y. Wang and S. Boyd, *IEEE Control Systems Magazine*, 2011
- Real-Time Convex Optimization in Signal Processing, J. Mattingley and S. Boyd, *IEEE Signal Processing Magazine*, 2010
- Automatic Code Generation for Real-Time Convex Optimization, J. Mattingley and S. Boyd, chapter in *Convex Optimization in Signal Processing and Communications*, Cambridge University Press, 2009