Code Generation for Embedded Convex Optimization

Jacob Mattingley and Stephen Boyd

Stanford University

Lund University, 22/8/2012

Convex optimization

» Problems solvable reliably and efficiently
» Widely used in scheduling, finance, engineering design

» Solve every few minutes or seconds

Code generation for embedded convex optimization

Replace ‘minutes” with ‘milliseconds’ and eliminate failure

Agenda

I. Introduction to embedded convex optimization and CVXGEN
II. Demonstration of CVXGEN
III. Techniques for constructing fast, robust solvers
IV. Verification of technical choices

V. Final notes and conclusions

Part I: Introduction

1. Embedded convex optimization
2. Embedded solvers
3. CVXGEN

Part I of V

Embedded convex optimization: Requirements

Embedded solvers must have:

> Time limit, sometimes strict, in milliseconds or microseconds
> Simple footprint for portability and verification
> No failures, even with somewhat poor data

Part I: Introduction

Embedded convex optimization: Exploitable features

Embedded solvers can exploit:

> Modest accuracy requirements
> Fixed dimensions, sparsity, structure
> Repeated use

> Custom design in pre-solve phase

Part I: Introduction

Embedded convex optimization: Applications

v

Signal processing, model predictive control

v

Fast simulations, Monte Carlo

> Low power devices

v

Sequential QP, branch-and-bound

Part I: Introduction

Embedded convex optimization: Pre-solve phase

Problem General solver
instance

Part I: Introduction

Embedded convex optimization: Pre-solve phase

Problem

General solver

instance

Problem family
description

Code generator

Problem

Compiler

Source code

Custom solver

v
Embedded solver

instance

Part I: Introduction

CVXGEN

» Code generator for embedded convex optimization
» Mattingley, Boyd
» Disciplined convex programming input

> Targets small QPs in flat, library-free C

Part I: Introduction

10

Part II: Demonstration

1. Manipulating optimization problems with CVXGEN
2. Generating and using solvers

3. Important hidden details

Part IT of V

11

CVXGEN: Problem specification
R

OTHER OUTPUT
latex spec
latex math
evx

cvxmod

OTHER TOOLS
user's guide

report a bug

Part Il of V

cvxgen: initial example - saved a moment ago - no errors - no codegen jem@cvxgen.com
PROBLEM 1 # Welcome to cuxgen.
. 2 # Here's a sample problem to get you started.
e 3
< dimensions
view Con=10
& end
std form 7
& parameters
9 A(8,n)
CODEGEN 0 b (8)
1 e (n)
generate C 12 end
13
matiab | yvariables
15 x (n)
16 end
CODE INFO | 17
16 minimize
statistics = c'sx + normi{x)
20 subject to
kkt sparsity 21 x == b
oxe= -1
23 end

12

CVXGEN: Automatic checking
S e —————————

cvxgen: initial example - saved a minute ago - 1 error - no codegen jem@cvxgen.com
15 objective must be convex.
PROBLEM 1 # Welcome to cuxgen. L
. 2 # Here's a sample problem to get you started.
e 3
< dimensions
view Y
& end
stdform
& parameters
9 A(8,n)
CODEGEN 0 b (8)

e dn)

generate € 1, eng

13

matlab lvariables

ox ()

16 end

CODE INFO 17

18 minimize

Statistics | 46 c'sx + normi{x) - (1/18)xnorminf{x)
20 subject to

kkt sparsity .. pwx == b

oxe= -1

23 end

OTHER OUTPUT

latex spec
latex math
evx

cvxmod

OTHER TOOLS
user's guide
report a bug

T ——
Part Il of V

CVXGEN: Formatted problem statement

cvxgen: initial example - saved a moment ago -

no errors - no codegen jem@cvxgen.com

PROBLEM
edit

view

std form

CODEGEN
generate C

matiab

CODE INFO
statistics

kkt sparsity

OTHER OUTPUT
latex spec
latex math
cvx

cvxmod

OTHER TOOLS
user's guide

report a bug

Problem statement

minimize ¢ x + |||,

subject to Ax = b
x> -1

Parameters
Ac R0 peRE ce RO

Optimization variables
xR0

Part Il of V

14

CVXGEN: Single-button code generation

OTHER OUTPUT
latex spec
latex math

cvx

cvxmod

OTHER TOOLS
user's guide

report a bug

cvxgen: initial example - saved a moment ago - no errors - no codegen Jjem@cvxgen.com
PROBLEM ~ Problem size
edit Your problem has 306 non-zero KKT matrix entries, which is relatively few. Code generation should be relatively
fast.
view
(cvxgen is best for optimization problems with up to around 2000 entries.)
std form
Code generation status
CODEGEN You have not generated code for this problem.
enerate C
‘
matiab
CODE INFO
statistics
kkt sparsity

Part Il of V

15

CVXGEN: Completed code generation

Qocoepginitialexample

PROBLEM
edit
view

std form

CODEGEN
generate C

matiab

CODE INFO
statistics

kkt sparsity

OTHER OUTPUT
latex spec
latex math

cvx

cvxmod

OTHER TOOLS
user's guide

report a bug

cvxgen: initial example - saved a minute ago

Problem size

no errors - up-to-date codegen

Jjem@cvxgen.com

Your problem has 306 non-zero KKT matrix entries, which is relatively few. Code generation should be relatively

fast.

(evxgen is best for optimization problems with up to around 2000 entries.)

Code generation status

You generated code a moment ago. The code matches the problem statement.

Cenerate code agaf

Generated files
cvxgen.zip
cvxgen. tar.gz
Makefile
csolve.c
csolve.m
cvxsolve.m

ldl.c
make_csolve.m
matrix_suppert.c
solver.c
solver.h
testsolver.c

util.c

complete download zip

complete download tar

complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download
complete preview - download

26k
23k
1k
6k
1k
1k
89k
1k
8k
8k
4k
5k
3k

Part Il of V

16

CVXGEN: Fast, problem-specific code

preview of solver.c close @

// Produced by cvxgen, 2010-08-16 11:27:13 —0700.
// cvxgen is Copyright (C) 2006-2610 Jacob Mattingley, jem@cvxgen.cem.

// Filename: solver.c.
7/ Description: Main solver file.

#include "solver.h"

void set_defaults(void) {
settings. resid_tol = le-6;
settings.eps = le-4;
settings.max_iters = 25;
settings.refine_steps =

settings.s init
settings.z_init
sﬂuws.d:uug
settings.verbos
settings.verbose_r reﬁnsnent =0;

settings.kkt_reg = le-7;

double eval_gaplvoid) {
int i3
double gap;

gap =
for (i

0; i< 30; i)

e

Part Il of V

17

CVXGEN: Automatic problem transformations

Qocoepginitialexample

cvxgen: initial example - saved a moment ago - no errors - no codegen jem@cvxgen.com (I}
PROBLEM KKT matrix
edit 88x88; 306 non-zeros. 10 variables, transformed to 20 in the solver.
view
std form "'\\
CODEGEN
generate C
matiab \\.
CODE INFO \
statistics
kkt sparsity
U
OTHER ouTPUT Minimization objective
T T
- 1[tﬂl:| [}[tm} [1} [rm]
latex math | 2 | X X c x
cvx
Equality constraint
cvxmod 5
Al =[b
oAl]=1p]
OTHER TOOLS
user's guide 8%20; 80 nonzeros. Sparsity diagram follows. L
o R .
)

Part I of V

18

CVXGEN: Automatically generated Matlab interface

OTHER OUTPUT
latex spec
latex math

cvx

cvxmod

OTHER TOOLS
user's guide

report a bug

cvxgen: initial example - saved a minute ago - no errors - up-to-date codegen Jjem@cvxgen.com
PROBLEM Follow these instructions to downioad and build a Matlab mex solver.
edit
Step 1: Download the build script
view
You only need this step once, to put cvxgen.m in your current directory or Matlab path.
std form
[Copy to clipboard | and paste into Matlab.
COPEGEN || rlurite('http: //cuxgen. stanford. edu/download/cvxgen.n’, "cuxgen.m');
generate C
matlab Step 2: Download custom code for this problem
Use this code for one-step download and build of a custom mex solver in Matlab.
CODE INFO
Copy ta clipboard | and paste into Matlab.
T p
kkt sparsity cvxgen(368256)

Part Il of V

19

Important hidden details

Important details not seen in demonstration:

> Extremely high speeds
> Bounded computation time

> Algorithm robustness

Part IT of V

20

Part III: Techniques

1. Transformation to canonical form

2. Interior-point algorithm
3. Solving the KKT system

> Permutation

> Regularization

> Factorization

> Iterative refinement
> Eliminating failure

4. Code generation

Part IIT of V

21

Transformation to canonical form

» Problem description uses high-level langauge

» Solve problems in canonical form: with variable x € R",

minimize (1/2)xTQx +¢"x
subjectto Gx<h, Ax=1D

» Transform high-level description to canonical form automatically:
1. Expand convex functions via epigraphs.
2. Collect optimization variables into single vector variable.
3. Shape parameters into coefficient matrices and constants.
4. Replace certain products with more efficient pre-computations.

» Generate code for forwards, backwards transformations

Part III: Techniques 22

Transformation to canonical form: Example

» Example problem in original form with variables x, y:

minimize xTQx +clx + “HyHl
subjectto A(x—b) <2y

» After epigraphical expansion, with new variable t:

minimize x"TQx + cTx + od”t
subjectto A(x—b) <2y, —t<y<t

> After reshaping variables and parameters into standard form:
x1"TQ 0 o x c 1"
minimize y 0 0 0 y |+ | «
t 0 00 t 0
A —21 x
0 y
0 t

x
y
t

subject to

Part III: Techniques

23

Solving the standard-form QP

» Standard primal-dual interior-point method with Mehrotra correction
> Reliably solve to high accuracy in 5-25 iterations

> Mehrotra ‘89, Wright 97, Vandenberghe "09

Part III: Techniques

24

Algorithm

Initialize via least-squares. Then, repeat:

1. Stop if the residuals and duality gap are sufficiently small.
2. Compute affine scaling direction by solving

Q o0 GT AT Axft [—(ATy 4+ GTz + Px + q)
0 Z S 0 A —5z
G I 0 0 Azl —(Gx+s—h)
A 0 0 0 Ayt I —(Ax—b)
3. Compute centering-plus-corrector direction by solving
Q 0 GT AT AxSC 7 r 0
0 Z S 0 Ase opl — diag(As*f) Az
G I 0 0 Az | T 0 !
A 0 O 0 Ay | L 0

with

w=s"z/p o= ((s+ A (z + aAz)/(s72))°

oo =sup{a € [0,1] | s + aAs™ > 0, z + aAZ > 0}

Part III: Techniques 25

Algorithm (continued)

4. Combine the updates with
Ax = AxE + Ax As = As*f + Ase
Ay = AP+ Ay Az = AT Az
5. Find
o =min{1l, 0.99sup{x > 0]s+ aAs >0, z+ aAz > 0}},

and update
X :=x+ aAx s: =5+ xAs

Yy =y+ oAy z:=z+alAz

Part III: Techniques

26

Solving KKT system

» Most computation effort, typically 80%, is solution of KKT system

» Each iteration requires two solves with (symmetrized) KKT matrix

Q o0 ‘GT AT

0 s'z| I o0
K= G I 0 0
A 0 0 0

> Quasisemidefinite: block diagonals PSD, NSD

» Use permuted LDLT factorization with diagonal D, unit lower-triangular L

Part III: Techniques 27

Solving KKT system: Permutation issues

» Factorize PKPT = LDLT, with permutation matrix P
» L, D unique, if they exist
» P determines nonzero count of L, thus computation time

» Standard method: choose P at solve time
> Uses numerical values of K
> Maintains stability
> Slow (complex data structures, branching)

» CVXGEN: choose P at development time
» Factorization does not even exist, for some P
> Even if factorization exists, stability highly dependent on P
> How do we fix this?

Part III: Techniques 28

Solving KKT system: Regularization

» Use regularized KKT system K instead

» Choose regularization constant € > 0, then instead factor:

Q 0 |G AT

0 S'z| I 0 el| 0 T ooToT T
P i o +{ 5 ‘_d} PT = PKPT = LDL
A 0 0 0

> Know quasidefinite: block diagonals PD, ND

» Factorization always exists (Gill et al, '96)

Part III: Techniques

29

Solving KKT system: Selecting the permutation

> Select P at development time to minimize nonzero count of L
> Simple greedy algorithm:

Create an undirected graph from K.

While nodes remain, repeat:

1. For each uneliminated node, calculate the fill-in if it were eliminated next
2. Eliminate the node with lowest induced fill-in.

> Can prove that P determines signs of D;; (will come back to this)

Part III: Techniques

30

Solving KKT system: Solution

» Algorithm requires two solutions { with different residuals 7, of
Kt =r

» Instead, solve B
¢ =K' =P LD 'L7Pr

» Use cached factorization, forward- and backward-substitution
> But: solution to wrong system

» Use iterative refinement

Part III: Techniques

31

Solving KKT system: Iterative refinement

v

Want solution to K{ = 7, only have operator K1~ K1

> Use iterative refinement:
Solve K¢ = 7.
Want correction 8¢ such that K(¢©) + () = r. Instead:
1. Compute approximate correction by solving K82 = — K,
2. Update iterate ¢(1) = ¢(0) 4 5¢(0),

3. Repeat until ¢ is sufficiently accurate.

v

Iterative refinement with K provably converges

v

CVXGEN uses only one refinement step

Part III: Techniques

32

Solving KKT system: Eliminating failure

» Regularized factorization cannot fail with exact arithmetic
» Numerical errors can still cause divide-by-zero exceptions
» Only divisions in algorithm are by D;;
» Factorization computes 51’1‘ # Dj;, due to numerical errors
» Therefore, given sign &; of Dj;, use

Dii = &((&Di)+ + €)
» Makes division ‘safe’

> Iterative refinement still provably converges

Part III: Techniques

Code generation

» Code generation converts symbolic representation to compilable code

> Use templates [color key: C code, control code, C substitutions]

void kkt_multiply(double *result, double *source) {
- kkt.rows.times do |i]
result[#{i}] = 0;
- kkt.neighbors(i).each do |j]|
- if kkt.nonzero? i, j
result += #{kkt[i,j]}*source[#{]j}];
3

> Generate extremely explicit code

Part III: Techniques 34

Code generation: Extremely explicit code

» Embedded constants, exposed for compiler optimizations:
// r3 = -Gx - s + h.
multbymG(r3, x);
for (1 = 0; 1 < 36; i++)
r3[i] += -s[i] + h[i];

» Computing single entry in factorization:

L[265] = (- L[254]*v[118] - L[255]*v[119] - L[256]*v[120] - L[257]*v[121]
- L[258]*v[122] - L[259]1*v[123] - L[260]*v[124] - L[261]*v[125]
- L[262]*v[126] - L[263]*v[127] - L[264]*v[128])*d_inv[129];

> Parameter stuffing:

b[4] = params.A[4]*params.x_0[0] + params.A[9]*params.x_0[1]
+ params.A[1l4]*params.x_0[2] + params.A[19]*params.x_0[3]
+ params.A[24]*params.x_0[4];

Part III: Techniques 35

Part IV: Verification

1. Computation speed
2. Reliability

Part IV of V

36

Computation speeds

> Maximum execution time more relevant than average

> Test millions of problem instances to verify performance

Part IV: Verification

37

Computation speeds: Examples

Scheduling Battery

Variables 279 153
Constraints 465 357
CVX, Intel i7 42s 13s

Part IV: Verification

Suspension

104
165

26s

38

Computation speeds: Examples

Scheduling Battery Suspension

Variables 279 153 104
Constraints 465 357 165
CVX, Intel i7 42s 13s 26s

CVXGEN, Intel i7 850 pus 360 ps 110 ps

Part IV: Verification 38

Computation speeds: Examples

Scheduling Battery

Variables 279 153
Constraints 465 357
CVX, Intel i7 42s 13s

CVXGEN, Intel i7 850 us 360 us

CVXGEN, Atom 7.7 ms 4.0 ms

Part IV: Verification

Suspension

104
165

26s
110 ps

1.0 ms

38

Reliability testing

» Analyzed millions of instances from many problem families

» Goal: tune algorithm for total reliability, high speed

» Investigated:
> Algorithms: primal-barrier, primal-dual, primal-dual with Mehrotra
> Initialization methods including two-phase, infeasible-start, least-squares
> Regularization and iterative refinement
> Algebra: dense, library-based, sparse, flat; all with different solution methods
> Code generation, using profiling to compare strategies
> Compiler integration, using profiling and disassembly

Part IV: Verification 39

Reliability testing: Example

» Computation time proportional to iteration count
> Thus, simulate many instances and record iteration count

» Example: {;-norm minimization with box constraints
1

Part IV: Verification

40

Reliability testing: Example

» Computation time proportional to iteration count

» Thus, simulate many instances and record iteration count

» Example: {;-norm minimization with box constraints
1

» Iteration count with default settings:

20k 22k
16k
5k
Number of instances: []8% 106 7 1

with iteration count: <5 6 7 8 9 10 11 12

Part IV: Verification

Reliability testing: No KKT regularization

> Default regularization, € = 10~7

37k

20k 22k

16k

5k
[]6% 106 7

<5 6 7 8 9 10 11 12 13

> No regularization, € =0

Part IV: Verification

100k
€
14
14 15 16 17 18 19 =220

41

Reliability testing: Decreased KKT regularization

> Default regularization, € = 10~7

37k

20k 22k

16k

5k
[]6% 106 7

<5 6 7 8 9 10 11 12 13

» Decreased regularization, e = 107!

37k

20k 22k

16k

5k

<5 6 7 8 9 10 11 12 13

Part IV: Verification

€

14

42

Reliability testing: Increased KKT regularization

> Default regularization, € = 10 7

37k
20k 22k
16k
5k
[]&%6 106 7 1
<5 6 7 8 9 10 11 12 13 14

> Increased regularization, e = 1072

15k 14 15k q3;0 13k
6k
4k 3k ok D
DDDD 2% 2k 2k 1k 927 766 651 506
2 13 14 15 16 17 18 19 >20

9
43

Part IV: Verification

Reliability testing: Iterative refinement

» Default of 1 iterative refinement step, with € = 1072

15k 14 15k q3p 13k

9k
LI 2 2 & 1 9w 766 51 506
<5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >20

» Increased to 10 iterative refinement steps, with e = 1072

36k

20k 20k
16k

5k
2k
D E] 1k 431 196 115 81 37 41 27 29 15

<5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >20

Part IV: Verification

44

Reliability testing: Summary

» Regularization and iterative refinement allow reliable solvers

> Iteration count relatively insensitive to parameters

Part IV: Verification

45

Part V: Final notes

1. Conclusions
2. Contributions
3. Extensions

4. Publications

Part Vof V

46

Conclusions

Contributions

> Framework for embedded convex optimization
> Design and demonstration of reliable algorithms

> First application of code generation to convex optimization

CVXGEN

» Fastest solvers ever written

> Already in use

Part V: Final notes

47

Extensions

» Blocking, for larger problems
» More general convex families

» Different hardware

Part V: Final notes

48

Publications

» CVXGEN: A Code Generator for Embedded Convex Optimization,
J. Mattingley and S. Boyd, Optimization and Engineering, 2012

» Receding Horizon Control: Automatic Generation of High-Speed Solvers,
J. Mattingley, Y. Wang and S. Boyd, IEEE Control Systems Magazine, 2011

> Real-Time Convex Optimization in Signal Processing,]. Mattingley and
S. Boyd, IEEE Signal Processing Magazine, 2010

» Automatic Code Generation for Real-Time Convex Optimization,
J. Mattingley and S. Boyd, chapter in Convex Optimization in Signal
Processing and Communications, Cambridge University Press, 2009

Part V: Final notes

49

