
Code Generation for Embedded Convex Optimization

Jacob Mattingley and Stephen Boyd

Stanford University

Lund University, 22/8/2012

Convex optimization

I Problems solvable reliably and efficiently

I Widely used in scheduling, finance, engineering design

I Solve every few minutes or seconds

2

Code generation for embedded convex optimization

Replace ‘minutes’ with ‘milliseconds’ and eliminate failure

3

Agenda

I. Introduction to embedded convex optimization and CVXGEN

II. Demonstration of CVXGEN

III. Techniques for constructing fast, robust solvers

IV. Verification of technical choices

V. Final notes and conclusions

4

Part I: Introduction

1. Embedded convex optimization

2. Embedded solvers

3. CVXGEN

Part I of V 5

Embedded convex optimization: Requirements

Embedded solvers must have:

I Time limit, sometimes strict, in milliseconds or microseconds
I Simple footprint for portability and verification
I No failures, even with somewhat poor data

Part I: Introduction 6

Embedded convex optimization: Exploitable features

Embedded solvers can exploit:

I Modest accuracy requirements
I Fixed dimensions, sparsity, structure
I Repeated use
I Custom design in pre-solve phase

Part I: Introduction 7

Embedded convex optimization: Applications

I Signal processing, model predictive control

I Fast simulations, Monte Carlo

I Low power devices

I Sequential QP, branch-and-bound

Part I: Introduction 8

Embedded convex optimization: Pre-solve phase

Problem

instance

General solver
x
⋆

Source code
Code generatorProblem family

description
Custom solver

Embedded solver

Compiler

Problem
instance

x
⋆

Part I: Introduction 9

Embedded convex optimization: Pre-solve phase

Problem

instance

General solver
x
⋆

Source code
Code generatorProblem family

description
Custom solver

Embedded solver

Compiler

Problem
instance

x
⋆

Part I: Introduction 9

CVXGEN

I Code generator for embedded convex optimization

I Mattingley, Boyd

I Disciplined convex programming input

I Targets small QPs in flat, library-free C

Part I: Introduction 10

Part II: Demonstration

1. Manipulating optimization problems with CVXGEN

2. Generating and using solvers

3. Important hidden details

Part II of V 11

CVXGEN: Problem specification

Part II of V 12

CVXGEN: Automatic checking

Part II of V 13

CVXGEN: Formatted problem statement

Part II of V 14

CVXGEN: Single-button code generation

Part II of V 15

CVXGEN: Completed code generation

Part II of V 16

CVXGEN: Fast, problem-specific code

Part II of V 17

CVXGEN: Automatic problem transformations

Part II of V 18

CVXGEN: Automatically generated Matlab interface

Part II of V 19

Important hidden details

Important details not seen in demonstration:

I Extremely high speeds
I Bounded computation time
I Algorithm robustness

Part II of V 20

Part III: Techniques

1. Transformation to canonical form

2. Interior-point algorithm

3. Solving the KKT system
I Permutation
I Regularization
I Factorization
I Iterative refinement
I Eliminating failure

4. Code generation

Part III of V 21

Transformation to canonical form

I Problem description uses high-level langauge

I Solve problems in canonical form: with variable x ∈ Rn,

minimize (1/2)xTQx + qTx
subject to Gx 6 h, Ax = b

I Transform high-level description to canonical form automatically:
1. Expand convex functions via epigraphs.
2. Collect optimization variables into single vector variable.
3. Shape parameters into coefficient matrices and constants.
4. Replace certain products with more efficient pre-computations.

I Generate code for forwards, backwards transformations

Part III: Techniques 22

Transformation to canonical form: Example

I Example problem in original form with variables x, y:

minimize xTQx + cTx + α‖y‖1

subject to A(x − b) 6 2y

I After epigraphical expansion, with new variable t:

minimize xTQx + cTx + α1Tt
subject to A(x − b) 6 2y, −t 6 y 6 t

I After reshaping variables and parameters into standard form:

minimize

 x
y
t

T  Q 0 0
0 0 0
0 0 0

 x
y
t

+

 c
α1
0

T  x
y
t


subject to

 A −2I 0
0 −I −I
0 I I

 x
y
t

 6

 Ab
0
0


Part III: Techniques 23

Solving the standard-form QP

I Standard primal-dual interior-point method with Mehrotra correction

I Reliably solve to high accuracy in 5–25 iterations

I Mehrotra ’89, Wright ’97, Vandenberghe ’09

Part III: Techniques 24

Algorithm

Initialize via least-squares. Then, repeat:

1. Stop if the residuals and duality gap are sufficiently small.
2. Compute affine scaling direction by solving Q 0 GT AT

0 Z S 0
G I 0 0
A 0 0 0



∆xaff

∆saff

∆zaff

∆yaff

 =

 −(ATy + GTz + Px + q)
−Sz

−(Gx + s − h)
−(Ax − b)

 .

3. Compute centering-plus-corrector direction by solving Q 0 GT AT

0 Z S 0
G I 0 0
A 0 0 0


 ∆xcc

∆scc

∆zcc

∆ycc

 =

 0
σµ1 − diag(∆saff)∆zaff

0
0

 ,

with

µ = sTz/p σ =
(
(s + α∆saff)T(z + α∆zaff)/(sTz)

)3

α = sup{α ∈ [0, 1] | s + α∆saff > 0, z + α∆zaff > 0}
.

Part III: Techniques 25

Algorithm (continued)

4. Combine the updates with

∆x = ∆xaff + ∆xcc ∆s = ∆saff + ∆scc

∆y = ∆yaff + ∆ycc ∆z = ∆zaff + ∆zcc
.

5. Find

α = min{1, 0.99 sup{α > 0 | s + α∆s > 0, z + α∆z > 0}},

and update
x := x + α∆x s := s + α∆s

y := y + α∆y z := z + α∆z
.

Part III: Techniques 26

Solving KKT system

I Most computation effort, typically 80%, is solution of KKT system

I Each iteration requires two solves with (symmetrized) KKT matrix

K =


Q 0 GT AT

0 S−1Z I 0
G I 0 0
A 0 0 0


I Quasisemidefinite: block diagonals PSD, NSD

I Use permuted LDLT factorization with diagonal D, unit lower-triangular L

Part III: Techniques 27

Solving KKT system: Permutation issues

I Factorize PKPT = LDLT, with permutation matrix P

I L, D unique, if they exist

I P determines nonzero count of L, thus computation time
I Standard method: choose P at solve time

I Uses numerical values of K
I Maintains stability
I Slow (complex data structures, branching)

I CVXGEN: choose P at development time
I Factorization does not even exist, for some P
I Even if factorization exists, stability highly dependent on P
I How do we fix this?

Part III: Techniques 28

Solving KKT system: Regularization

I Use regularized KKT system K̃ instead

I Choose regularization constant ε > 0, then instead factor:

P




Q 0 GT AT

0 S−1Z I 0
G I 0 0
A 0 0 0

+

[
εI 0
0 −εI

]PT = PK̃PT = LDLT

I K̃ now quasidefinite: block diagonals PD, ND

I Factorization always exists (Gill et al, ’96)

Part III: Techniques 29

Solving KKT system: Selecting the permutation

I Select P at development time to minimize nonzero count of L

I Simple greedy algorithm:

Create an undirected graph from K̃.
While nodes remain, repeat:

1. For each uneliminated node, calculate the fill-in if it were eliminated next.
2. Eliminate the node with lowest induced fill-in.

I Can prove that P determines signs of Dii (will come back to this)

Part III: Techniques 30

Solving KKT system: Solution

I Algorithm requires two solutions `with different residuals r, of

K` = r

I Instead, solve
` = K̃−1r = PTL−TD−1L−1Pr

I Use cached factorization, forward- and backward-substitution

I But: solution to wrong system

I Use iterative refinement

Part III: Techniques 31

Solving KKT system: Iterative refinement

I Want solution to K` = r, only have operator K̃−1 ≈ K−1

I Use iterative refinement:

Solve K̃`(0) = r.
Want correction δ` such that K(`(0) + δ`) = r. Instead:

1. Compute approximate correction by solving K̃δ`(0) = r − K`(0).

2. Update iterate `(1) = `(0) + δ`(0).

3. Repeat until `(k) is sufficiently accurate.

I Iterative refinement with K̃ provably converges

I CVXGEN uses only one refinement step

Part III: Techniques 32

Solving KKT system: Eliminating failure

I Regularized factorization cannot fail with exact arithmetic

I Numerical errors can still cause divide-by-zero exceptions

I Only divisions in algorithm are by Dii

I Factorization computes D̂ii , Dii, due to numerical errors

I Therefore, given sign ξi of Dii, use

Dii = ξi((ξiD̂ii)+ + ε)

I Makes division ‘safe’

I Iterative refinement still provably converges

Part III: Techniques 33

Code generation

I Code generation converts symbolic representation to compilable code

I Use templates [color key: C code, control code, C substitutions]

void kkt_multiply(double *result, double *source) {

- kkt.rows.times do |i|

result[#{i}] = 0;

- kkt.neighbors(i).each do |j|

- if kkt.nonzero? i, j

result += #{kkt[i,j]}*source[#{j}];

}

I Generate extremely explicit code

Part III: Techniques 34

Code generation: Extremely explicit code

I Embedded constants, exposed for compiler optimizations:
// r3 = -Gx - s + h.
multbymG(r3, x);
for (i = 0; i < 36; i++)
r3[i] += -s[i] + h[i];

I Computing single entry in factorization:
L[265] = (- L[254]*v[118] - L[255]*v[119] - L[256]*v[120] - L[257]*v[121]

- L[258]*v[122] - L[259]*v[123] - L[260]*v[124] - L[261]*v[125]
- L[262]*v[126] - L[263]*v[127] - L[264]*v[128])*d_inv[129];

I Parameter stuffing:
b[4] = params.A[4]*params.x_0[0] + params.A[9]*params.x_0[1]

+ params.A[14]*params.x_0[2] + params.A[19]*params.x_0[3]
+ params.A[24]*params.x_0[4];

Part III: Techniques 35

Part IV: Verification

1. Computation speed

2. Reliability

Part IV of V 36

Computation speeds

I Maximum execution time more relevant than average

I Test millions of problem instances to verify performance

Part IV: Verification 37

Computation speeds: Examples

Scheduling Battery Suspension

Variables 279 153 104
Constraints 465 357 165

CVX, Intel i7 4.2 s 1.3 s 2.6 s

CVXGEN, Intel i7 850 µs 360 µs 110 µs

CVXGEN, Atom 7.7 ms 4.0 ms 1.0 ms

Part IV: Verification 38

Computation speeds: Examples

Scheduling Battery Suspension

Variables 279 153 104
Constraints 465 357 165

CVX, Intel i7 4.2 s 1.3 s 2.6 s
CVXGEN, Intel i7 850 µs 360 µs 110 µs

CVXGEN, Atom 7.7 ms 4.0 ms 1.0 ms

Part IV: Verification 38

Computation speeds: Examples

Scheduling Battery Suspension

Variables 279 153 104
Constraints 465 357 165

CVX, Intel i7 4.2 s 1.3 s 2.6 s
CVXGEN, Intel i7 850 µs 360 µs 110 µs

CVXGEN, Atom 7.7 ms 4.0 ms 1.0 ms

Part IV: Verification 38

Reliability testing

I Analyzed millions of instances from many problem families

I Goal: tune algorithm for total reliability, high speed
I Investigated:

I Algorithms: primal-barrier, primal-dual, primal-dual with Mehrotra
I Initialization methods including two-phase, infeasible-start, least-squares
I Regularization and iterative refinement
I Algebra: dense, library-based, sparse, flat; all with different solution methods
I Code generation, using profiling to compare strategies
I Compiler integration, using profiling and disassembly

Part IV: Verification 39

Reliability testing: Example

I Computation time proportional to iteration count

I Thus, simulate many instances and record iteration count

I Example: `1-norm minimization with box constraints

I Iteration count with default settings:

16k

6 5

20k

6

37k

7

22k

8

5k

9

696

10
106
11

7
12 13

1
14

Number of instances:
with iteration count:

Part IV: Verification 40

Reliability testing: Example

I Computation time proportional to iteration count

I Thus, simulate many instances and record iteration count

I Example: `1-norm minimization with box constraints

I Iteration count with default settings:

16k

6 5

20k

6

37k

7

22k

8

5k

9

696

10
106
11

7
12 13

1
14

Number of instances:
with iteration count:

Part IV: Verification 40

Reliability testing: No KKT regularization

I Default regularization, ε = 10−7

16k

6 5

20k

6

37k

7

22k

8

5k

9

696

10
106
11

7
12 13

1
14

I No regularization, ε = 0

6 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

100k

> 20

Part IV: Verification 41

Reliability testing: Decreased KKT regularization

I Default regularization, ε = 10−7

16k

6 5

20k

6

37k

7

22k

8

5k

9

696

10
106
11

7
12 13

1
14

I Decreased regularization, ε = 10−11

16k

6 5

20k

6

37k

7

22k

8

5k

9

699

10
108
11

10
12 13

1
14 15 16 17 18 19

252
> 20

Part IV: Verification 42

Reliability testing: Increased KKT regularization

I Default regularization, ε = 10−7

16k

6 5

20k

6

37k

7

22k

8

5k

9

696

10
106
11

7
12 13

1
14

I Increased regularization, ε = 10−2

15k

6 5

14k

6

15k

7

13k

8

9k

9

6k

10

4k

11

3k

12

2k

13

2k

14

1k

15

927

16

766

17

651

18

506

19

13k

> 20

Part IV: Verification 43

Reliability testing: Iterative refinement

I Default of 1 iterative refinement step, with ε = 10−2

15k

6 5

14k

6

15k

7

13k

8

9k

9

6k

10

4k

11

3k

12

2k

13

2k

14

1k

15

927

16

766

17

651

18

506

19

13k

> 20

I Increased to 10 iterative refinement steps, with ε = 10−2

16k

6 5

20k

6

36k

7

20k

8

5k

9

1k

10

431

11
196
12

115
13

81
14

37
15

41
16

27
17

29
18

15
19

2k

> 20

Part IV: Verification 44

Reliability testing: Summary

I Regularization and iterative refinement allow reliable solvers

I Iteration count relatively insensitive to parameters

Part IV: Verification 45

Part V: Final notes

1. Conclusions

2. Contributions

3. Extensions

4. Publications

Part V of V 46

Conclusions

Contributions

I Framework for embedded convex optimization
I Design and demonstration of reliable algorithms
I First application of code generation to convex optimization

CVXGEN

I Fastest solvers ever written
I Already in use

Part V: Final notes 47

Extensions

I Blocking, for larger problems

I More general convex families

I Different hardware

Part V: Final notes 48

Publications

I CVXGEN: A Code Generator for Embedded Convex Optimization,
J. Mattingley and S. Boyd, Optimization and Engineering, 2012

I Receding Horizon Control: Automatic Generation of High-Speed Solvers,
J. Mattingley, Y. Wang and S. Boyd, IEEE Control Systems Magazine, 2011

I Real-Time Convex Optimization in Signal Processing, J. Mattingley and
S. Boyd, IEEE Signal Processing Magazine, 2010

I Automatic Code Generation for Real-Time Convex Optimization,
J. Mattingley and S. Boyd, chapter in Convex Optimization in Signal
Processing and Communications, Cambridge University Press, 2009

Part V: Final notes 49

