
Alternating Direction Method of Multipliers

Stephen Boyd

Lund University, 23/8/12

source:

Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers (Boyd, Parikh, Chu, Peleato, Eckstein)

1

Goals

robust methods for

◮ arbitrary-scale optimization

– machine learning/statistics with huge data-sets
– dynamic optimization on large-scale network

◮ decentralized optimization

– devices/processors/agents coordinate to solve large problem, by passing
relatively small messages

2

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

3

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Dual decomposition 4

Dual problem

◮ convex equality constrained optimization problem

minimize f(x)
subject to Ax = b

◮ Lagrangian: L(x, y) = f(x) + yT (Ax− b)

◮ dual function: g(y) = infx L(x, y)

◮ dual problem: maximize g(y)

◮ recover x⋆ = argminx L(x, y
⋆)

Dual decomposition 5

Dual ascent

◮ gradient method for dual problem: yk+1 = yk + αk∇g(yk)

◮ ∇g(yk) = Ax̃− b, where x̃ = argminx L(x, y
k)

◮ dual ascent method is

xk+1 := argminx L(x, y
k) // x-minimization

yk+1 := yk + αk(Axk+1 − b) // dual update

◮ works, with lots of strong assumptions

Dual decomposition 6

Dual decomposition

◮ suppose f is separable:

f(x) = f1(x1) + · · ·+ fN (xN), x = (x1, . . . , xN)

◮ then L is separable in x: L(x, y) = L1(x1, y) + · · ·+ LN (xN , y)− yT b,

Li(xi, y) = fi(xi) + yTAixi

◮ x-minimization in dual ascent splits into N separate minimizations

xk+1

i := argmin
xi

Li(xi, y
k)

which can be carried out in parallel

Dual decomposition 7

Dual decomposition

◮ dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

xk+1

i := argminxi
Li(xi, y

k), i = 1, . . . , N

yk+1 := yk + αk(
∑N

i=1
Aix

k+1

i − b)

◮ scatter yk; update xi in parallel; gather Aix
k+1

i

◮ solve a large problem

– by iteratively solving subproblems (in parallel)
– dual variable update provides coordination

◮ works, with lots of assumptions; often slow

Dual decomposition 8

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Method of multipliers 9

Method of multipliers

◮ a method to robustify dual ascent

◮ use augmented Lagrangian (Hestenes, Powell 1969), ρ > 0

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)‖Ax− b‖22

◮ method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

xk+1 := argmin
x

Lρ(x, y
k)

yk+1 := yk + ρ(Axk+1 − b)

(note specific dual update step length ρ)

Method of multipliers 10

Method of multipliers dual update step

◮ optimality conditions (for differentiable f):

Ax⋆ − b = 0, ∇f(x⋆) +AT y⋆ = 0

(primal and dual feasibility)

◮ since xk+1 minimizes Lρ(x, y
k)

0 = ∇xLρ(x
k+1, yk)

= ∇xf(x
k+1) +AT

(

yk + ρ(Axk+1 − b)
)

= ∇xf(x
k+1) +AT yk+1

◮ dual update yk+1 = yk + ρ(xk+1 − b) makes (xk+1, yk+1) dual feasible

◮ primal feasibility achieved in limit: Axk+1 − b → 0

Method of multipliers 11

Method of multipliers

(compared to dual decomposition)

◮ good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value +∞, . . .)

◮ bad news: quadratic penalty destroys splitting of the x-update, so can’t
do decomposition

Method of multipliers 12

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Alternating direction method of multipliers 13

Alternating direction method of multipliers

◮ a method

– with good robustness of method of multipliers
– which can support decomposition

◮ “robust dual decomposition” or “decomposable method of multipliers”

◮ proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating direction method of multipliers 14

Alternating direction method of multipliers

◮ ADMM problem form (with f , g convex)

minimize f(x) + g(z)
subject to Ax+Bz = c

– two sets of variables, with separable objective

◮ Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22

◮ ADMM:

xk+1 := argminx Lρ(x, z
k, yk) // x-minimization

zk+1 := argminz Lρ(x
k+1, z, yk) // z-minimization

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) // dual update

Alternating direction method of multipliers 15

Alternating direction method of multipliers

◮ if we minimized over x and z jointly, reduces to method of multipliers

◮ instead, we do one pass of a Gauss-Seidel method

◮ we get splitting since we minimize over x with z fixed, and vice versa

Alternating direction method of multipliers 16

ADMM and optimality conditions

◮ optimality conditions (for differentiable case):

– primal feasibility: Ax+Bz − c = 0
– dual feasibility: ∇f(x) +AT y = 0, ∇g(z) +BT y = 0

◮ since zk+1 minimizes Lρ(x
k+1, z, yk) we have

0 = ∇g(zk+1) +BT yk + ρBT (Axk+1 +Bzk+1 − c)

= ∇g(zk+1) +BT yk+1

◮ so with ADMM dual variable update, (xk+1, zk+1, yk+1) satisfies second
dual feasibility condition

◮ primal and first dual feasibility are achieved as k → ∞

Alternating direction method of multipliers 17

ADMM with scaled dual variables

◮ combine linear and quadratic terms in augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22
= f(x) + g(z) + (ρ/2)‖Ax+Bz − c+ u‖22 + const.

with uk = (1/ρ)yk

◮ ADMM (scaled dual form):

xk+1 := argmin
x

(

f(x) + (ρ/2)‖Ax+Bzk − c+ uk‖22
)

zk+1 := argmin
z

(

g(z) + (ρ/2)‖Axk+1 +Bz − c+ uk‖22
)

uk+1 := uk + (Axk+1 +Bzk+1 − c)

Alternating direction method of multipliers 18

Convergence

◮ assume (very little!)

– f , g convex, closed, proper
– L0 has a saddle point

◮ then ADMM converges:

– iterates approach feasibility: Axk +Bzk − c → 0
– objective approaches optimal value: f(xk) + g(zk) → p⋆

Alternating direction method of multipliers 19

Related algorithms

◮ operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)

◮ proximal point algorithm (Rockafellar 1976)

◮ Dykstra’s alternating projections algorithm (1983)

◮ Spingarn’s method of partial inverses (1985)

◮ Rockafellar-Wets progressive hedging (1991)

◮ proximal methods (Rockafellar, many others, 1976–present)

◮ Bregman iterative methods (2008–present)

◮ most of these are special cases of the proximal point algorithm

Alternating direction method of multipliers 20

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Common patterns 21

Common patterns

◮ x-update step requires minimizing f(x) + (ρ/2)‖Ax− v‖22
(with v = Bzk − c+ uk, which is constant during x-update)

◮ similar for z-update

◮ several special cases come up often

◮ can simplify update by exploiting structure in these cases

Common patterns 22

Decomposition

◮ suppose f is block-separable,

f(x) = f1(x1) + · · ·+ fN (xN), x = (x1, . . . , xN)

◮ A is conformably block separable: ATA is block diagonal

◮ then x-update splits into N parallel updates of xi

Common patterns 23

Proximal operator

◮ consider x-update when A = I

x+ = argmin
x

(

f(x) + (ρ/2)‖x− v‖22
)

= proxf,ρ(v)

◮ some special cases:

f = IC (indicator fct. of set C) x+ := ΠC(v) (projection onto C)

f = λ‖ · ‖1 (ℓ1 norm) x+

i := Sλ/ρ(vi) (soft thresholding)

(Sa(v) = (v − a)+ − (−v − a)+)

Common patterns 24

Quadratic objective

◮ f(x) = (1/2)xTPx+ qTx+ r

◮ x+ := (P + ρATA)−1(ρAT v − q)

◮ use matrix inversion lemma when computationally advantageous

(P + ρATA)−1 = P−1 − ρP−1AT (I + ρAP−1AT)−1AP−1

◮ (direct method) cache factorization of P + ρATA (or I + ρAP−1AT)

◮ (iterative method) warm start, early stopping, reducing tolerances

Common patterns 25

Smooth objective

◮ f smooth

◮ can use standard methods for smooth minimization

– gradient, Newton, or quasi-Newton
– preconditionned CG, limited-memory BFGS (scale to very large problems)

◮ can exploit

– warm start
– early stopping, with tolerances decreasing as ADMM proceeds

Common patterns 26

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Examples 27

Constrained convex optimization

◮ consider ADMM for generic problem

minimize f(x)
subject to x ∈ C

◮ ADMM form: take g to be indicator of C

minimize f(x) + g(z)
subject to x− z = 0

◮ algorithm:

xk+1 := argmin
x

(

f(x) + (ρ/2)‖x− zk + uk‖22
)

zk+1 := ΠC(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

Examples 28

Lasso

◮ lasso problem:

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

◮ ADMM form:

minimize (1/2)‖Ax− b‖22 + λ‖z‖1
subject to x− z = 0

◮ ADMM:

xk+1 := (ATA+ ρI)−1(AT b+ ρzk − yk)

zk+1 := Sλ/ρ(x
k+1 + yk/ρ)

yk+1 := yk + ρ(xk+1 − zk+1)

Examples 29

Lasso example

◮ example with dense A ∈ R1500×5000

(1500 measurements; 5000 regressors)

◮ computation times

factorization (same as ridge regression) 1.3s

subsequent ADMM iterations 0.03s

lasso solve (about 50 ADMM iterations) 2.9s

full regularization path (30 λ’s) 4.4s

◮ not bad for a very short Matlab script

Examples 30

Sparse inverse covariance selection

◮ S: empirical covariance of samples from N (0,Σ), with Σ−1 sparse
(i.e., Gaussian Markov random field)

◮ estimate Σ−1 via ℓ1 regularized maximum likelihood

minimize Tr(SX)− log detX + λ‖X‖1

◮ methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)

Examples 31

Sparse inverse covariance selection via ADMM

◮ ADMM form:

minimize Tr(SX)− log detX + λ‖Z‖1
subject to X − Z = 0

◮ ADMM:

Xk+1 := argmin
X

(

Tr(SX)− log detX + (ρ/2)‖X − Zk + Uk‖2F
)

Zk+1 := Sλ/ρ(X
k+1 + Uk)

Uk+1 := Uk + (Xk+1 − Zk+1)

Examples 32

Analytical solution for X-update

◮ compute eigendecomposition ρ(Zk − Uk)− S = QΛQT

◮ form diagonal matrix X̃ with

X̃ii =
λi +

√

λ2
i + 4ρ

2ρ

◮ let Xk+1 := QX̃QT

◮ cost of X-update is an eigendecomposition

Examples 33

Sparse inverse covariance selection example

◮ Σ−1 is 1000× 1000 with 104 nonzeros

– graphical lasso (Fortran): 20 seconds – 3 minutes
– ADMM (Matlab): 3 – 10 minutes
– (depends on choice of λ)

◮ very rough experiment, but with no special tuning, ADMM is in ballpark
of recent specialized methods

◮ (for comparison, COVSEL takes 25+ min when Σ−1 is a 400× 400
tridiagonal matrix)

Examples 34

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Consensus and exchange 35

Consensus optimization

◮ want to solve problem with N objective terms

minimize
∑N

i=1
fi(x)

– e.g., fi is the loss function for ith block of training data

◮ ADMM form:
minimize

∑N
i=1

fi(xi)
subject to xi − z = 0

– xi are local variables

– z is the global variable

– xi − z = 0 are consistency or consensus constraints
– can add regularization using a g(z) term

Consensus and exchange 36

Consensus optimization via ADMM

◮ Lρ(x, z, y) =
∑N

i=1

(

fi(xi) + yTi (xi − z) + (ρ/2)‖xi − z‖22
)

◮ ADMM:

xk+1

i := argmin
xi

(

fi(xi) + ykTi (xi − zk) + (ρ/2)‖xi − zk‖22
)

zk+1 :=
1

N

N
∑

i=1

(

xk+1

i + (1/ρ)yki
)

yk+1

i := yki + ρ(xk+1

i − zk+1)

◮ with regularization, averaging in z update is followed by proxg,ρ

Consensus and exchange 37

Consensus optimization via ADMM

◮ using
∑N

i=1
yki = 0, algorithm simplifies to

xk+1

i := argmin
xi

(

fi(xi) + ykTi (xi − xk) + (ρ/2)‖xi − xk‖22
)

yk+1

i := yki + ρ(xk+1

i − xk+1)

where xk = (1/N)
∑N

i=1
xk
i

◮ in each iteration

– gather xk

i and average to get xk

– scatter the average xk to processors
– update yk

i locally (in each processor, in parallel)
– update xi locally

Consensus and exchange 38

Statistical interpretation

◮ fi is negative log-likelihood for parameter x given ith data block

◮ xk+1

i is MAP estimate under prior N (xk + (1/ρ)yki , ρI)

◮ prior mean is previous iteration’s consensus shifted by ‘price’ of processor
i disagreeing with previous consensus

◮ processors only need to support a Gaussian MAP method

– type or number of data in each block not relevant
– consensus protocol yields global maximum-likelihood estimate

Consensus and exchange 39

Consensus classification

◮ data (examples) (ai, bi), i = 1, . . . , N , ai ∈ Rn, bi ∈ {−1,+1}

◮ linear classifier sign(aTw + v), with weight w, offset v

◮ margin for ith example is bi(a
T
i w + v); want margin to be positive

◮ loss for ith example is l(bi(a
T
i w + v))

– l is loss function (hinge, logistic, probit, exponential, . . .)

◮ choose w, v to minimize 1

N

∑N
i=1

l(bi(a
T
i w + v)) + r(w)

– r(w) is regularization term (ℓ2, ℓ1, . . .)

◮ split data and use ADMM consensus to solve

Consensus and exchange 40

Consensus SVM example

◮ hinge loss l(u) = (1− u)+ with ℓ2 regularization

◮ baby problem with n = 2, N = 400 to illustrate

◮ examples split into 20 groups, in worst possible way:
each group contains only positive or negative examples

Consensus and exchange 41

Iteration 1

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Consensus and exchange 42

Iteration 5

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Consensus and exchange 43

Iteration 40

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Consensus and exchange 44

Distributed lasso example

◮ example with dense A ∈ R400000×8000 (roughly 30 GB of data)

– distributed solver written in C using MPI and GSL
– no optimization or tuned libraries (like ATLAS, MKL)
– split into 80 subsystems across 10 (8-core) machines on Amazon EC2

◮ computation times

loading data 30s

factorization 5m

subsequent ADMM iterations 0.5–2s

lasso solve (about 15 ADMM iterations) 5–6m

Consensus and exchange 45

Exchange problem

minimize
∑N

i=1
fi(xi)

subject to
∑N

i=1
xi = 0

◮ another canonical problem, like consensus

◮ in fact, it’s the dual of consensus

◮ can interpret as N agents exchanging n goods to minimize a total cost

◮ (xi)j ≥ 0 means agent i receives (xi)j of good j from exchange

◮ (xi)j < 0 means agent i contributes |(xi)j | of good j to exchange

◮ constraint
∑N

i=1
xi = 0 is equilibrium or market clearing constraint

◮ optimal dual variable y⋆ is a set of valid prices for the goods

◮ suggests real or virtual cash payment (y⋆)Txi by agent i

Consensus and exchange 46

Exchange ADMM

◮ solve as a generic constrained convex problem with constraint set

C = {x ∈ RnN | x1 + x2 + · · ·+ xN = 0}

◮ scaled form:

xk+1

i := argmin
xi

(

fi(xi) + (ρ/2)‖xi − xk
i + xk + uk‖22

)

uk+1 := uk + xk+1

◮ unscaled form:

xk+1

i := argmin
xi

(

fi(xi) + ykTxi + (ρ/2)‖xi − (xk
i − xk)‖22

)

yk+1 := yk + ρxk+1

Consensus and exchange 47

Interpretation as tâtonnement process

◮ tâtonnement process: iteratively update prices to clear market

◮ work towards equilibrium by increasing/decreasing prices of goods based
on excess demand/supply

◮ dual decomposition is the simplest tâtonnement algorithm

◮ ADMM adds proximal regularization

– incorporate agents’ prior commitment to help clear market
– convergence far more robust convergence than dual decomposition

Consensus and exchange 48

Distributed dynamic energy management

◮ N devices exchange power in time periods t = 1, . . . , T

◮ xi ∈ RT is power flow profile for device i

◮ fi(xi) is cost of profile xi (and encodes constraints)

◮ x1 + · · ·+ xN = 0 is energy balance (in each time period)

◮ dynamic energy management problem is exchange problem

◮ exchange ADMM gives distributed method for dynamic energy
management

◮ each device optimizes its own profile, with quadratic regularization for
coordination

◮ residual (energy imbalance) is driven to zero

Consensus and exchange 49

Generators

−xt
0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

◮ 3 example generators

◮ left: generator costs/limits; right: ramp constraints

◮ can add cost for power changes

Consensus and exchange 50

Fixed loads

t
0 5 10 15 20
0

5

10

15

◮ 2 example fixed loads

◮ cost is +∞ for not supplying load; zero otherwise

Consensus and exchange 51

Shiftable load

t
0 5 10 15 20

0

0.5

1

1.5

2

◮ total energy consumed over an interval must exceed given minimum level

◮ limits on energy consumed in each period

◮ cost is +∞ for violating constraints; zero otherwise

Consensus and exchange 52

Battery energy storage system

t
0 5 10 15 20

0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

0.6

0

2

4

6

◮ energy store with maximum capacity, charge/discharge limits
◮ black: battery charge, red: charge/discharge profile
◮ cost is +∞ for violating constraints; zero otherwise

Consensus and exchange 53

Electric vehicle charging system

t
0 5 10 15 20
0

10

20

30

40

50

60

70

80

◮ black: desired charge profile; blue: charge profile

◮ shortfall cost for not meeting desired charge

Consensus and exchange 54

HVAC

t
0 5 10 15 20

0 5 10 15 20

0

0.5

1

1.5

2

50

60

70

80

90

100

◮ thermal load (e.g., room, refrigerator) with temperature limits
◮ magenta: ambient temperature; blue: load temperature
◮ red: cooling energy profile
◮ cost is +∞ for violating constraints; zero otherwise

Consensus and exchange 55

External tie

t
0 5 10 15 20

0 5 10 15 20

−1

0

1

0

0.5

1

1.5

2

2.5

◮ buy/sell energy from/to external grid at price pext(t)± γ(t)

◮ solid: pext(t); dashed: pext(t)± γ(t)

Consensus and exchange 56

Smart grid example

10 devices

◮ 3 generators

◮ 2 fixed loads

◮ 1 shiftable load

◮ 1 EV charging systems

◮ 1 battery

◮ 1 HVAC system

◮ 1 external tie

Consensus and exchange 57

Convergence

iteration: k = 1

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 3

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 5

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 10

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 15

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 20

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 25

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 30

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 35

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 40

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 45

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Convergence

iteration: k = 50

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Conclusions 59

Summary and conclusions

ADMM

◮ is the same as, or closely related to, many methods with other names

◮ has been around since the 1970s

◮ gives simple single-processor algorithms that can be competitive with
state-of-the-art

◮ can be used to coordinate many processors, each solving a substantial
problem, to solve a very large problem

Conclusions 60

	Dual decomposition
	Method of multipliers
	Alternating direction method of multipliers
	Common patterns
	Examples
	Consensus and exchange
	Conclusions

