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Goals

robust methods for

◮ arbitrary-scale optimization

– machine learning/statistics with huge data-sets
– dynamic optimization on large-scale network

◮ decentralized optimization

– devices/processors/agents coordinate to solve large problem, by passing
relatively small messages
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Dual problem

◮ convex equality constrained optimization problem

minimize f(x)
subject to Ax = b

◮ Lagrangian: L(x, y) = f(x) + yT (Ax− b)

◮ dual function: g(y) = infx L(x, y)

◮ dual problem: maximize g(y)

◮ recover x⋆ = argminx L(x, y
⋆)
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Dual ascent

◮ gradient method for dual problem: yk+1 = yk + αk∇g(yk)

◮ ∇g(yk) = Ax̃− b, where x̃ = argminx L(x, y
k)

◮ dual ascent method is

xk+1 := argminx L(x, y
k) // x-minimization

yk+1 := yk + αk(Axk+1 − b) // dual update

◮ works, with lots of strong assumptions
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Dual decomposition

◮ suppose f is separable:

f(x) = f1(x1) + · · ·+ fN (xN ), x = (x1, . . . , xN )

◮ then L is separable in x: L(x, y) = L1(x1, y) + · · ·+ LN (xN , y)− yT b,

Li(xi, y) = fi(xi) + yTAixi

◮ x-minimization in dual ascent splits into N separate minimizations

xk+1

i := argmin
xi

Li(xi, y
k)

which can be carried out in parallel
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Dual decomposition

◮ dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

xk+1

i := argminxi
Li(xi, y

k), i = 1, . . . , N

yk+1 := yk + αk(
∑N

i=1
Aix

k+1

i − b)

◮ scatter yk; update xi in parallel; gather Aix
k+1

i

◮ solve a large problem

– by iteratively solving subproblems (in parallel)
– dual variable update provides coordination

◮ works, with lots of assumptions; often slow
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Method of multipliers

◮ a method to robustify dual ascent

◮ use augmented Lagrangian (Hestenes, Powell 1969), ρ > 0

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)‖Ax− b‖22

◮ method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

xk+1 := argmin
x

Lρ(x, y
k)

yk+1 := yk + ρ(Axk+1 − b)

(note specific dual update step length ρ)
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Method of multipliers dual update step

◮ optimality conditions (for differentiable f):

Ax⋆ − b = 0, ∇f(x⋆) +AT y⋆ = 0

(primal and dual feasibility)

◮ since xk+1 minimizes Lρ(x, y
k)

0 = ∇xLρ(x
k+1, yk)

= ∇xf(x
k+1) +AT

(

yk + ρ(Axk+1 − b)
)

= ∇xf(x
k+1) +AT yk+1

◮ dual update yk+1 = yk + ρ(xk+1 − b) makes (xk+1, yk+1) dual feasible

◮ primal feasibility achieved in limit: Axk+1 − b → 0

Method of multipliers 11



Method of multipliers

(compared to dual decomposition)

◮ good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value +∞, . . . )

◮ bad news: quadratic penalty destroys splitting of the x-update, so can’t
do decomposition
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Alternating direction method of multipliers

◮ a method

– with good robustness of method of multipliers
– which can support decomposition

◮ “robust dual decomposition” or “decomposable method of multipliers”

◮ proposed by Gabay, Mercier, Glowinski, Marrocco in 1976
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Alternating direction method of multipliers

◮ ADMM problem form (with f , g convex)

minimize f(x) + g(z)
subject to Ax+Bz = c

– two sets of variables, with separable objective

◮ Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22

◮ ADMM:

xk+1 := argminx Lρ(x, z
k, yk) // x-minimization

zk+1 := argminz Lρ(x
k+1, z, yk) // z-minimization

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) // dual update
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Alternating direction method of multipliers

◮ if we minimized over x and z jointly, reduces to method of multipliers

◮ instead, we do one pass of a Gauss-Seidel method

◮ we get splitting since we minimize over x with z fixed, and vice versa
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ADMM and optimality conditions

◮ optimality conditions (for differentiable case):

– primal feasibility: Ax+Bz − c = 0
– dual feasibility: ∇f(x) +AT y = 0, ∇g(z) +BT y = 0

◮ since zk+1 minimizes Lρ(x
k+1, z, yk) we have

0 = ∇g(zk+1) +BT yk + ρBT (Axk+1 +Bzk+1 − c)

= ∇g(zk+1) +BT yk+1

◮ so with ADMM dual variable update, (xk+1, zk+1, yk+1) satisfies second
dual feasibility condition

◮ primal and first dual feasibility are achieved as k → ∞
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ADMM with scaled dual variables

◮ combine linear and quadratic terms in augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22
= f(x) + g(z) + (ρ/2)‖Ax+Bz − c+ u‖22 + const.

with uk = (1/ρ)yk

◮ ADMM (scaled dual form):

xk+1 := argmin
x

(

f(x) + (ρ/2)‖Ax+Bzk − c+ uk‖22
)

zk+1 := argmin
z

(

g(z) + (ρ/2)‖Axk+1 +Bz − c+ uk‖22
)

uk+1 := uk + (Axk+1 +Bzk+1 − c)
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Convergence

◮ assume (very little!)

– f , g convex, closed, proper
– L0 has a saddle point

◮ then ADMM converges:

– iterates approach feasibility: Axk +Bzk − c → 0
– objective approaches optimal value: f(xk) + g(zk) → p⋆
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Related algorithms

◮ operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)

◮ proximal point algorithm (Rockafellar 1976)

◮ Dykstra’s alternating projections algorithm (1983)

◮ Spingarn’s method of partial inverses (1985)

◮ Rockafellar-Wets progressive hedging (1991)

◮ proximal methods (Rockafellar, many others, 1976–present)

◮ Bregman iterative methods (2008–present)

◮ most of these are special cases of the proximal point algorithm
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Common patterns

◮ x-update step requires minimizing f(x) + (ρ/2)‖Ax− v‖22
(with v = Bzk − c+ uk, which is constant during x-update)

◮ similar for z-update

◮ several special cases come up often

◮ can simplify update by exploiting structure in these cases
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Decomposition

◮ suppose f is block-separable,

f(x) = f1(x1) + · · ·+ fN (xN ), x = (x1, . . . , xN )

◮ A is conformably block separable: ATA is block diagonal

◮ then x-update splits into N parallel updates of xi
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Proximal operator

◮ consider x-update when A = I

x+ = argmin
x

(

f(x) + (ρ/2)‖x− v‖22
)

= proxf,ρ(v)

◮ some special cases:

f = IC (indicator fct. of set C) x+ := ΠC(v) (projection onto C)

f = λ‖ · ‖1 (ℓ1 norm) x+

i := Sλ/ρ(vi) (soft thresholding)

(Sa(v) = (v − a)+ − (−v − a)+)
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Quadratic objective

◮ f(x) = (1/2)xTPx+ qTx+ r

◮ x+ := (P + ρATA)−1(ρAT v − q)

◮ use matrix inversion lemma when computationally advantageous

(P + ρATA)−1 = P−1 − ρP−1AT (I + ρAP−1AT )−1AP−1

◮ (direct method) cache factorization of P + ρATA (or I + ρAP−1AT )

◮ (iterative method) warm start, early stopping, reducing tolerances
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Smooth objective

◮ f smooth

◮ can use standard methods for smooth minimization

– gradient, Newton, or quasi-Newton
– preconditionned CG, limited-memory BFGS (scale to very large problems)

◮ can exploit

– warm start
– early stopping, with tolerances decreasing as ADMM proceeds
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Constrained convex optimization

◮ consider ADMM for generic problem

minimize f(x)
subject to x ∈ C

◮ ADMM form: take g to be indicator of C

minimize f(x) + g(z)
subject to x− z = 0

◮ algorithm:

xk+1 := argmin
x

(

f(x) + (ρ/2)‖x− zk + uk‖22
)

zk+1 := ΠC(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1
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Lasso

◮ lasso problem:

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

◮ ADMM form:

minimize (1/2)‖Ax− b‖22 + λ‖z‖1
subject to x− z = 0

◮ ADMM:

xk+1 := (ATA+ ρI)−1(AT b+ ρzk − yk)

zk+1 := Sλ/ρ(x
k+1 + yk/ρ)

yk+1 := yk + ρ(xk+1 − zk+1)
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Lasso example

◮ example with dense A ∈ R1500×5000

(1500 measurements; 5000 regressors)

◮ computation times

factorization (same as ridge regression) 1.3s

subsequent ADMM iterations 0.03s

lasso solve (about 50 ADMM iterations) 2.9s

full regularization path (30 λ’s) 4.4s

◮ not bad for a very short Matlab script
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Sparse inverse covariance selection

◮ S: empirical covariance of samples from N (0,Σ), with Σ−1 sparse
(i.e., Gaussian Markov random field)

◮ estimate Σ−1 via ℓ1 regularized maximum likelihood

minimize Tr(SX)− log detX + λ‖X‖1

◮ methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)
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Sparse inverse covariance selection via ADMM

◮ ADMM form:

minimize Tr(SX)− log detX + λ‖Z‖1
subject to X − Z = 0

◮ ADMM:

Xk+1 := argmin
X

(

Tr(SX)− log detX + (ρ/2)‖X − Zk + Uk‖2F
)

Zk+1 := Sλ/ρ(X
k+1 + Uk)

Uk+1 := Uk + (Xk+1 − Zk+1)

Examples 32



Analytical solution for X-update

◮ compute eigendecomposition ρ(Zk − Uk)− S = QΛQT

◮ form diagonal matrix X̃ with

X̃ii =
λi +

√

λ2
i + 4ρ

2ρ

◮ let Xk+1 := QX̃QT

◮ cost of X-update is an eigendecomposition

Examples 33



Sparse inverse covariance selection example

◮ Σ−1 is 1000× 1000 with 104 nonzeros

– graphical lasso (Fortran): 20 seconds – 3 minutes
– ADMM (Matlab): 3 – 10 minutes
– (depends on choice of λ)

◮ very rough experiment, but with no special tuning, ADMM is in ballpark
of recent specialized methods

◮ (for comparison, COVSEL takes 25+ min when Σ−1 is a 400× 400
tridiagonal matrix)
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Consensus optimization

◮ want to solve problem with N objective terms

minimize
∑N

i=1
fi(x)

– e.g., fi is the loss function for ith block of training data

◮ ADMM form:
minimize

∑N
i=1

fi(xi)
subject to xi − z = 0

– xi are local variables

– z is the global variable

– xi − z = 0 are consistency or consensus constraints
– can add regularization using a g(z) term
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Consensus optimization via ADMM

◮ Lρ(x, z, y) =
∑N

i=1

(

fi(xi) + yTi (xi − z) + (ρ/2)‖xi − z‖22
)

◮ ADMM:

xk+1

i := argmin
xi

(

fi(xi) + ykTi (xi − zk) + (ρ/2)‖xi − zk‖22
)

zk+1 :=
1

N

N
∑

i=1

(

xk+1

i + (1/ρ)yki
)

yk+1

i := yki + ρ(xk+1

i − zk+1)

◮ with regularization, averaging in z update is followed by proxg,ρ
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Consensus optimization via ADMM

◮ using
∑N

i=1
yki = 0, algorithm simplifies to

xk+1

i := argmin
xi

(

fi(xi) + ykTi (xi − xk) + (ρ/2)‖xi − xk‖22
)

yk+1

i := yki + ρ(xk+1

i − xk+1)

where xk = (1/N)
∑N

i=1
xk
i

◮ in each iteration

– gather xk

i and average to get xk

– scatter the average xk to processors
– update yk

i locally (in each processor, in parallel)
– update xi locally
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Statistical interpretation

◮ fi is negative log-likelihood for parameter x given ith data block

◮ xk+1

i is MAP estimate under prior N (xk + (1/ρ)yki , ρI)

◮ prior mean is previous iteration’s consensus shifted by ‘price’ of processor
i disagreeing with previous consensus

◮ processors only need to support a Gaussian MAP method

– type or number of data in each block not relevant
– consensus protocol yields global maximum-likelihood estimate
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Consensus classification

◮ data (examples) (ai, bi), i = 1, . . . , N , ai ∈ Rn, bi ∈ {−1,+1}

◮ linear classifier sign(aTw + v), with weight w, offset v

◮ margin for ith example is bi(a
T
i w + v); want margin to be positive

◮ loss for ith example is l(bi(a
T
i w + v))

– l is loss function (hinge, logistic, probit, exponential, . . . )

◮ choose w, v to minimize 1

N

∑N
i=1

l(bi(a
T
i w + v)) + r(w)

– r(w) is regularization term (ℓ2, ℓ1, . . . )

◮ split data and use ADMM consensus to solve
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Consensus SVM example

◮ hinge loss l(u) = (1− u)+ with ℓ2 regularization

◮ baby problem with n = 2, N = 400 to illustrate

◮ examples split into 20 groups, in worst possible way:
each group contains only positive or negative examples
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Iteration 1
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Iteration 5
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Iteration 40
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Distributed lasso example

◮ example with dense A ∈ R400000×8000 (roughly 30 GB of data)

– distributed solver written in C using MPI and GSL
– no optimization or tuned libraries (like ATLAS, MKL)
– split into 80 subsystems across 10 (8-core) machines on Amazon EC2

◮ computation times

loading data 30s

factorization 5m

subsequent ADMM iterations 0.5–2s

lasso solve (about 15 ADMM iterations) 5–6m
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Exchange problem

minimize
∑N

i=1
fi(xi)

subject to
∑N

i=1
xi = 0

◮ another canonical problem, like consensus

◮ in fact, it’s the dual of consensus

◮ can interpret as N agents exchanging n goods to minimize a total cost

◮ (xi)j ≥ 0 means agent i receives (xi)j of good j from exchange

◮ (xi)j < 0 means agent i contributes |(xi)j | of good j to exchange

◮ constraint
∑N

i=1
xi = 0 is equilibrium or market clearing constraint

◮ optimal dual variable y⋆ is a set of valid prices for the goods

◮ suggests real or virtual cash payment (y⋆)Txi by agent i
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Exchange ADMM

◮ solve as a generic constrained convex problem with constraint set

C = {x ∈ RnN | x1 + x2 + · · ·+ xN = 0}

◮ scaled form:

xk+1

i := argmin
xi

(

fi(xi) + (ρ/2)‖xi − xk
i + xk + uk‖22

)

uk+1 := uk + xk+1

◮ unscaled form:

xk+1

i := argmin
xi

(

fi(xi) + ykTxi + (ρ/2)‖xi − (xk
i − xk)‖22

)

yk+1 := yk + ρxk+1
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Interpretation as tâtonnement process

◮ tâtonnement process: iteratively update prices to clear market

◮ work towards equilibrium by increasing/decreasing prices of goods based
on excess demand/supply

◮ dual decomposition is the simplest tâtonnement algorithm

◮ ADMM adds proximal regularization

– incorporate agents’ prior commitment to help clear market
– convergence far more robust convergence than dual decomposition
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Distributed dynamic energy management

◮ N devices exchange power in time periods t = 1, . . . , T

◮ xi ∈ RT is power flow profile for device i

◮ fi(xi) is cost of profile xi (and encodes constraints)

◮ x1 + · · ·+ xN = 0 is energy balance (in each time period)

◮ dynamic energy management problem is exchange problem

◮ exchange ADMM gives distributed method for dynamic energy
management

◮ each device optimizes its own profile, with quadratic regularization for
coordination

◮ residual (energy imbalance) is driven to zero
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Generators
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◮ 3 example generators

◮ left: generator costs/limits; right: ramp constraints

◮ can add cost for power changes
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Fixed loads

t
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◮ 2 example fixed loads

◮ cost is +∞ for not supplying load; zero otherwise
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Shiftable load
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◮ total energy consumed over an interval must exceed given minimum level

◮ limits on energy consumed in each period

◮ cost is +∞ for violating constraints; zero otherwise
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Battery energy storage system
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◮ energy store with maximum capacity, charge/discharge limits
◮ black: battery charge, red: charge/discharge profile
◮ cost is +∞ for violating constraints; zero otherwise
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Electric vehicle charging system
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◮ black: desired charge profile; blue: charge profile

◮ shortfall cost for not meeting desired charge
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HVAC
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◮ thermal load (e.g., room, refrigerator) with temperature limits
◮ magenta: ambient temperature; blue: load temperature
◮ red: cooling energy profile
◮ cost is +∞ for violating constraints; zero otherwise
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External tie
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◮ buy/sell energy from/to external grid at price pext(t)± γ(t)

◮ solid: pext(t); dashed: pext(t)± γ(t)
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Smart grid example

10 devices

◮ 3 generators

◮ 2 fixed loads

◮ 1 shiftable load

◮ 1 EV charging systems

◮ 1 battery

◮ 1 HVAC system

◮ 1 external tie
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Convergence

iteration: k = 1
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 3
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 5
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 10
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 15
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 20
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 25

t
0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0
0.5
1

1.5

2

4

6

0

5

10

t
0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 30
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 35
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 40
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Convergence

iteration: k = 45
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k

Consensus and exchange 58



Convergence

iteration: k = 50
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◮ left: solid: optimal generator profile, dashed: profile at kth iteration

◮ right: residual vector x̄k
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Summary and conclusions

ADMM

◮ is the same as, or closely related to, many methods with other names

◮ has been around since the 1970s

◮ gives simple single-processor algorithms that can be competitive with
state-of-the-art

◮ can be used to coordinate many processors, each solving a substantial
problem, to solve a very large problem
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