
Lecture 9: LQG in I/O form
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• Summary

LQG in state space

Process

x(k+ 1) = Φx(k) + Γu(k) + v(k)

y(k) = Cx(k) + e(k)

Filter

x̂(k+ 1pk) = Φ x̂(kpk− 1) + Γu(k) + K ε (k)

ε (k) = y(k) − Cx̂(kpk− 1)

Controller
u(k) = −Lx̂(kpk− 1) − Mε (k)

Optimal system dynamics P(z) = det(zI − Φ + ΓL)

Optimal filter dynamics C(z) = det(zI − Φ + KC)

How to obtain P and C?

Optimal system dynamics

Assume stationarity

P(z) = det(zI − Φ + ΓL)

For the SISO case (Q1 = C
TC and Q2 = ρ)

ρA(z−1)A(z) + B(z−1)B(z) = rP(z−1)P(z)

where r = ΓTSΓ + ρ. Will be proved later!

Spectral factorization

• P(z) monic deg P = deg A = n

• P(z) roots inside or on the unit circle

Inside if ρ ,= 0

• ρ → 0 P(z) = zdB(z)/b0
Possibly reflected in the unit circle

Optimal filter dynamics

State space representation for

y(k) =
B(q)

A(q)
u(k) +

C(q)

A(q)
e(k)

C(q)

A(q)
=
qn + c1q

n−1 + . . . cn
qn + a1qn−1 + . . .an

=
C(q) − A(q)

A(q)
+ 1

on observer form

x(k+ 1) = Φx(k) + Γu(k) + Γve(k)

y(k) = Cx(k) + e(k)

C =


1 0 . . . 0




ΓT =


0 . . . b0 . . . bn−d





ΓTv =


 c1 − a1 c2 − a2 . . . cn − an
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Optimal filter dynamics, cont’d

The Kalman filter is given by

x̂(k+ 1) = (Φ − KC)x̂(k) + Γu(k) + K y(k)

with K = Γv!

Thus
det(qI − (Φ − KC)) = C(q)

Roots of C(z) inside the unit circle

Heuristic solution

Process (deg A = degC = n)

A(q)y(k) = B(q)u(k) + C(q)e(k)

No common factors between A and B

Controller

u(k) = −
S(q)

R(q)
y(k) deg R = n

Closed loop system (Diophantine equation)

A(z)R(z) + B(z)S(z) = P(z)C(z)

Solution?

Uniqueness??

Solution and uniqueness

Diophantine equation deg P = degC = n

A(z)R(z) + B(z)S(z) = P(z)C(z)

Case 1 – Delay in the controller

deg S = n− 1 and deg R = n
[ exists unique solution (Theorem 5.1)
2n coefficients and 2n equations

Case 2 – No delay in the controller

deg S = n and deg R = n
2n+ 1 coefficients and 2n equations

[ Extra condition required. How to get that?

Case 2 – No delay in the controller

Lemma 12.2: P(z) given by spectral factorization, A(z) be

monic, A(z) and B(z) no common roots outside the unit disc
or on the unit circle; then there exists a unique solution to the

equations

A∗(z)X (z) + rP(z)S∗(z) = B(z)C∗(z)

zdB∗(z)X (z) − rP(z)R∗(z) = −ρA(z)C∗(z)

with deg X (z) < n, deg R∗(z) ≤ n and deg S∗(z) < n, where

n = deg A(z).

S(z) = znS∗(z−1), R(z) = znR∗(z−1), S(0) = 0

The two identities can be written as

P∗(z)X (z) = B(z)R∗(z) − ρA(z)S∗(z)
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LQG I/O case (Theorem 12.4)
Assume:

1. deg A(z) = degC(z) = n

2. All the zeros of C(z) inside the unit disc

3. No factors common to A(z), B(z), C(z)

4. A possible common factor of A(z) and B(z) has all its

zeros inside the unit disc.

Let the monic polynomial P(z) have all its zeros inside the unit
disc and deg P(z) = n. The optimal control law with no delay is

u(k) = −
S∗(q−1)

R∗(q−1)
y(k) = −

S(q)

R(q)
y(k)

where R∗(z) and S∗(z) are the unique solution to (Lemma

12.2) with deg X (z) < n.

LQG I/O case,cont’d

The resulting closed loop system is

y(k) =
R(q)

P(q)
e(k), u(k) = −

S(q)

P(q)
e(k)

and the minimal value of the loss function is

minE(y2 + ρu2) =
σ 2

2π i

∮

R(z)R(z−1) + ρS(z)S(z−1)

P(z)P(z−1)

dz

z

Sketch of the proof

Transform the control variable

u = v−
S

R
y

v is a transformed control variable to be determined

y=
BRv+ CRe

AR + BS
=
BRv+ CRe

PC
=
BR

PC
v+
R

P
e

Then

u = v−
SBv+ SCe

PC
=
PC − BS

PC
v−
S

P
e =
AR

PC
v−
S

P
e

Sketch of the proof, cont’d

The loss function can be written as

J = E(y2 + ρu2) = E

(

BR

PC
v+
R

P
e

)2

+ ρE

(

AR

PC
v−
S

P
e

)2

= J1 + 2J2 + J3

J1 depends only on v2, J3 only on e2, and J2 contains cross
terms.

For causal controllers with no time delay v(t) = V (q)e(t),
where V (q) is a rational function with zero pole excess.

J2 =
σ 2

2π i

∮

B(z)R(z)R(z−1) − ρA(z)R(z)S(z−1)

P(z)C(z)P(z−1)
V (z)

dz

z
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Sketch of the proof, cont’d

But
B(z)R(z−1) − ρA(z)S(z−1) = P(z−1)X (z)

Hence

J2 =
σ 2

2π i

∮

R(z)X (z)

P(z)C(z)
V (z)

dz

z
= E

(

(R(q)X (q)

P(q)C(q)
v(k)

)

e(k)

)

P(z) and C(z) are stable implies that deg X (z) < n and

deg R(z)X (z) < deg P(z)C(z) = 2n

The quantity
R(q)X (q)

P(q)C(q)
v(k)

is thus a function of e(k − 1), e(k − 2), . . . independent of
e(k) [ J2 = 0 [ J1 minimum for v = 0

Under the carpet

What about:

• Common factors between the polynomials A, B, and C.

• The proof that S(0) = 0 is the condition to use.

• How the optimal controller is derived directly.

• The case A(0) = 0.

• Zeros on the unit circle

Example – Unstable zero

A(z) = (z− 1)(z− 0.7)

B(z) = 0.9z+ 1

C(z) = z(z− 0.7)

Spectral factorization

rP(z)P(z−1) = ρA(z)A(z−1) + B(z)B(z−1)

Diophantine equation

P(z)C(z) = A(z)R(z) + B(z)S(z)

gives here

R(z) = z(z+ r1) S(z) = s0z(z− 0.7)

r1 =
1+ p1 − 0.9p2

1.9
s0 =

1+ p1 + p2
1.9

How to find P?

Spectral factorization

Solve
rP(z)P(z−1) = ρA(z)A(z−1) + B(z)B(z−1)

or the algebraic Riccati equation. Messy calculations. Use

Matlab

Polynomial identity

rho=1;

Astar=A(end:-1:1);

Bstar=Ba(end:-1:1);

rhs=rho*conv(Astar,A)...

+conv(Bstar,Ba);

pp=dsort(roots(rhs));

P=poly(pp(end-2+1:end));

Algebraic Riccati eq.

Phi=[1.7 1;-0.7 0];

Gam=[0.9; 1];

Q1=[1 0;0 0];

[L,S,E]=dlqr(Phi,Gam,Q1,rho);

P=poly(E);
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Variation of ρ

Input (dashed) and
output (full) variances

Closed loop poles
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Simulation

Output and input when ρ = 0
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Simulation

Output when ρ = 0 (dashed)

and ρ = 1 (full). Input when ρ = 1
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Computational procedure

1. Rewrite into standard ABC-form

2. Spectral factorization to get P(z).
Possibly stable common factors of A and B will appear in

P

3a. If A(0) ,= 0 solve Diophantine equation with deg R =
deg S = n and S(0) = 0
If non-uniqueness go to Step 3b

3b.If A(0) = 0 solve Diophantine equation and

A(z)R(z) + B(z)S(z) = P(z)C(z)

P∗(z)X (z) + ρA(z)S∗(z) = R∗(z)B(z)

Unstable common factors?
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Interpretation and extensions

• Close connection with state-space formulation and pole

placement

• The optimization gives a unique solution

• Uncontrollable and unstable modes requires new loss
function. Useful to introduce integral action.

Gain margin for discrete-time LQ

The Riccati equation can be written as (11.37)

ρ +
B(z−1)B(z)

A(z−1)A(z)
= r(1+ H1(z

−1))(1+ H1(z))

where
H1(z) = L(zI − Φ)−1Γ

The return difference

1+ H1(z) = 1+ L(zI − Φ)−1Γ =
P(z)

A(z)

Thus

H1(z) =
P(z) − A(z)

A(z)

Gain margin for discrete-time LQ cont’d

Use the controller
u(k) = −β Lx(k)

The return difference is now

1+ βH1(z)

The stability of the closed-loop system is determined from

A(z) + β
(

P(z) − A(z)
)

= 0

Finite gain margin seen from root locus arguments

Compare the continuous-time case

0.5 < β < ∞

Summary

• Input-output formulation, innovation model

A(q)y(k) = B(q)u(k) + C(q)e(k)

• Diophantine equation

• Prediction

• Minimum variance control, stable and unstable inverse

• LQG – Uniqueness through optimization

• Everything is connected
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