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Motivation 1: Networked Control

Johan Nilsson: Real-Time Control Systems with Delays, PhD thesis,
1998 (cited 1450 times)
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Motivation 2: Real-Time Scheduling

Example: Three control tasks executing on a shared computing
platform under EDF scheduling
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How is performance affected by input and output jitter?

How to design an optimal controller?
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Analysis Using Jitterbug

Inputs:

Signal model
Continuous-time and discrete-time linear systems driven by white
noise
Quadratic cost functions

Timing model
Determines when the discrete-time systems are updated
Basic period h

Random delays between timing nodes described by probability
mass functions with resolution δ

Outputs:

Total cost (∞ if not mean-square stable)

Spectral densities of all outputs
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Example: Networked Control Loop

Signal model Periodic timing model
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Example: Networked Control Loop

Signal model Periodic timing model
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Example of Analysis

Plant: G(s) =
1000

s(s + 1)
, R1c = 1

Sampler: Hs(z) = 1, R2 = 0.01

Controller: Hc(z) = −K

(

1 +
Td

h

z − 1

z

)

Actuator: Ha(z) = 1

Cost function: J = lim
T →∞

1

T

∫

T

0

(

y2(t) + u2(t)
)

dt

Delay distributions: pτsc
, pτca
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Matlab Commands

G = 1000/(s*(s+1));

Qc = diag([1 1]);

Hs = 1;

Hc = -K*(1+Td/h*(z-1)/z);

Ha = 1;

Ptausc = [ ... ];

Ptauca = [ ... ];

N = initjitterbug(delta,h);

N = addtimingnode(N,1,Ptausc,2);

N = addtimingnode(N,2,Ptauca,3);

N = addtimingnode(N,3);

N = addcontsys(N,1,G,4,Qc,R1c);

N = adddiscsys(N,2,Hs,1,1,[],R2);

N = adddiscsys(N,3,Hc,2,2);

N = adddiscsys(N,4,Ha,3,3);

N = calcdynamics(N);

J = calccost(N)
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Example of Results

Vary sampling period h and total delay:
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More Complicated Models
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random choice of path

choice of path depending on previous delay

different update equations in different nodes

different update equations depending on previous delay

aperiodic systems
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Internal Workings

1 Sample the continuous-time systems, the continuous-time noise,
and the cost functions with the time-grain δ

2 Translate the timing model into a Markov chain

3 Formulate the closed-loop system as a jump linear system

x(k + 1) = Φ(m)x(k) + e(k), E

{

e(k)eT(k)
}

= R(m)

where Φ(m) and R(m) depend on the Markov state m

4 Compute the stationary covariance P = E

{

xxT

}

from

P (k + 1) = E

{

Φ(m)P (k)Φ(m)T + R(m)
}

Aperiodic systems: iterate until convergence
Periodic systems: solve system of n2 linear equations
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Control Design Using Jitterbug

Sampled-data LQG controller for continuous-time plant

ZOH or impulse hold sampling

Kalman filter with or without direct term

Constant-delay design

Variable-delay design ⇒ stochastic Riccati equation
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Example: Intersample Variance

[See Computer-Controlled Systems, p. 493–495]

Consider ZOH control of

dx = u dt + dv

where v(t) is a Wiener process with incremental covariance dt.

Assume sampled measurements

y(tk) = x(tk) + ε(tk), E ε2 = 1
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Example: Intersample Variance

[See Computer-Controlled Systems, p. 493–495]

Consider ZOH control of

dx = u dt + dv

where v(t) is a Wiener process with incremental covariance dt.

Assume sampled measurements

y(tk) = x(tk) + ε(tk), E ε2 = 1

Compare:

Controller minimizing J = E y2(tk)

Controller minimizing J = E
∫

h

0
(y2(tk + τ))dτ
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Example: Intersample Variance
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Intersample variance for ctrl based on discrete cost
Intersample variance for ctrl based on continuous cost
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Example: Delay Compensation

Plant: P (s) =
1

s2 − 1
, R1c = 1

Sampler: h = 0.5, R2 = 0.01

Cost function: J = E
(

y2(t) + 0.01u2(t)
)

dt

Input-output delay: τ ∈ U(0, τmax), 0 ≤ τmax ≤ h
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Example: Delay Compensation

Plant: P (s) =
1

s2 − 1
, R1c = 1

Sampler: h = 0.5, R2 = 0.01

Cost function: J = E
(

y2(t) + 0.01u2(t)
)

dt

Input-output delay: τ ∈ U(0, τmax), 0 ≤ τmax ≤ h

Compare:

Controller designed assuming zero delay

Controller designed for average delay

Controller designed for the given delay distribution
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Example: Delay Compensation
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Conclusions

Jitterbug can evaluate quadratic performance criteria for linear
stochastic systems under quite general timing models

Input-output delay
Sampling and output jitter
Vacant sampling, lost controls
Gain scheduling based on actual delay
. . .

Convenient commands for delay-aware LQG design

Limitations:
Average-case performance analysis (no worst-case guarantees)
Delays assumed independent from period to period
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Download:
http://www.control.lth.se/research/tools/jitterbug/
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