
12

Optimal Design Methods:

A Polynomial Approach

12.1 Introduction

Optimal design methods based on inputoutput models are considered in this
chapter. Design of regulators based on linear models and quadratic criteria is
discussed. This is one class of problems that admits closedform solutions. The
problems are solved by other methods in Chapter 11. The inputoutput approach
gives additional insight and different numerical algorithms are also obtained.

The problem formulation is given in Sec. 12.2. This includes discussion
of models for dynamics, disturbances, and criteria, as well as specification of
admissible controls. The model is given in terms of three polynomials. A very
simple example is also solved using first principles. This example shows clearly
that optimal control and optimal filtering problems are closely connected. The
prediction problem is then solved in Sec. 12.3. The solution is easily obtained by
polynomial division. A simple explicit formula for the transfer function of the
optimal predictor is given.

The minimumvariance control law is derived in Sec. 12.4. For systems
with stable inverses, the control law is obtained in terms of the polynomials
that characterize the optimal predictor. For systems with unstable inverses,
the solution is obtained by solving a Diophantine equation in polynomials of
the type discussed in Chapter 5. The minimumvariance control problem may
thus be interpreted as a poleplacement problem. This gives insight into suitable
choices of closedloop poles and observer poles for the poleplacement problem.
The LQGcontrol problem is solved in Sec. 12.5. It is shown that the solution
may be expressed in terms of spectral factorization and solution of a Diophantine
equation. Practical aspects, such as selection of the sampling period, are given
in Sec. 12.6.
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12.2 Problem Formulation

It is assumed that the process to be controlled is linear and timeinvariant and
that it has one input u and one output y. The dynamics of the process are
characterized by a combination of a timedelay and a rationaltransfer function.
It is also assumed that the disturbances may be described as filtered white
noise. A steadystate regulation problem is considered. The criterion is based
on the meansquare deviations of the control signal and the output signal. In
the formal problem statement given next, it is assumed that the model and the
criterion are sampled [compare with Sec. 2.3 and (11.1)].

Process Dynamics

Assume that the process dynamics are characterized by

x(k) = B1(q)
A1(q) u(k) (12.1)

where A1(q) and B1(q) are polynomials in the forwardshift operator.

Disturbances

Assume that the influence of the environment on the process can be charac
terized by disturbances that are stochastic processes. Because the system is
linear, the principle of superposition can be used to reduce all disturbances to
an equivalent disturbance v at the system output. The output of the system is
thus given by

y(k) = x(k) + v(k) (12.2)
Further assume that the disturbance v may be represented as the output of a
linear system driven by white noise—that is,

v(k) = C1(q)
A2(q) e(k) (12.3)

where C1(q) and A2(q) are polynomials in the forwardshift operator, and e(k) is
a sequence of independent or uncorrelated random variableswith zero mean and
standard deviation σ . The disturbance vmay be a stationary random process. It
may, however, also be drifting, because the polynomial A2(q) may be unstable.
The model of the process and its environment can be reduced to a standard
form. Eliminate v and x among (12.1), (12.2), and (12.3), and introduce

A = A1 A2

B = B1A2

C = C1 A1

(12.4)

The following model is then obtained.

A(q)y(k) = B(q)u(k) + C(q)e(k) (12.5)
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Figure 12.1 Representation of a system with one input and stochastic dis
turbances using one or two noise sources.

This is the canonical model, which will be the basis of the control design. In
the special case when there are no disturbances, the model is simply a rational
pulsetransfer function (see Sec. 2.6). When there is no control signal, the model
is a stochastic process with a rational spectral density or an ARMA process (see
Sec. 10.4). The model (12.5) is a convenient canonical representation of a linear
system perturbed by noise. In Chapter 11 the process was driven by two noise
sources. By using the spectralfactorization theorem (Theorem 10.3) the noise
can be reduced to one source. Compare Fig. 12.1.

When the polynomial C(q) has all its zeros inside the unit disc, it is called
an innovation’s representation, because the random variables e(k) represent the
innovations of the random process. Notice the symmetry between y and e. If e

and u are known up to time k, then y(k) can be computed, and if y and u are
known up to time k, the innovation e(k) can also be computed. Notice that the
calculations of the residuals are governed by the dynamics of the polynomial
C(q). This polynomial can therefore be interpreted as the observer polynomial.
Because (12.5) is an innovations model, the solutions to filtering problems be
come very simple.

Equation (12.5) can be normalized so that the leading coefficients of the
polynomials A(q) and C(q) are unity. Such polynomials are called monic. The
polynomial C may also be multiplied by an arbitrary power of q, as this does not
change the correlation structure of C(q)e(t). This may be used to normalize C

so that deg C = deg A. The polynomials A(q) and B(q)may have zeros inside or
outside the unit disc. It is assumed that all the zeros of the polynomial C(q) are
inside the unit disc. By spectral factorization (Theorem 10.3), the polynomial
C(q) may be changed so that all its zeros are inside the unit disc or on the unit
circle. An example is used to show this important point.

Example 12.1 Modification of the polynomial C

Consider the polynomial
C(z) = z + 2

which has the zero z = −2 outside the unit disc. Consider the signal

n(k) = C(q)e(k)

where e(k) is a sequence of uncorrelated random variables with zero mean and
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unit variance. The spectral density of n is given by

φ (eiωh) = 1
2π

C(eiωh)C(e−iωh)

Because
C(z)C(z−1) = (z + 2)(z−1 + 2) = (1 + 2z−1)(1+ 2z)

= (2z + 1)(2z−1 + 1) = 4(z + 0.5)(z−1 + 0.5)
the signal n may also be represented as

n(k) = C∗(q)e(k)

where
C∗(z) = 2z + 1

is the reciprocal of the polynomial C(z) (see Sec. 2.6).

If the calculations of (12.4) give a polynomial C(q) that has zeros outside the
unit disc, the polynomial C is factored as

C = C+C−

where C− contains all factors with zeros outside the unit disc. The polynomial
C is then replaced by C+C−∗.

Criteria

In steadystate regulation it makes sense to express the criteria in terms of
steadystate variances of the control variable and the process output. For regu
lation of systems with one output, the criterion may be to minimize the variance
of the output. This is discussed in Sec.6.6 . Also compare with Fig. 6.7. This leads
to the criterion

Jmv = Ey2(k) (12.6)
where it is assumed that the scales are chosen so that y = 0 corresponds to
the desired set point. A control law that minimizes the criterion (12.6) is called
minimumvariance control. The criterion may also be expressed as

J∞ = lim
N→∞

E

{

1
N

N∑

k=1

y2(k)
}

Notice that this criterion is an approximation of the continuoustime loss func
tion

J∞ = lim
T→∞

E

{

1
T

∫ T

0

y2(t) dt

}

(12.7)

Amore accurate approximation, which takes the behavior of the signals between
the sampling instants into account, is given in Sec. 11.1. Some consequences of
the approximation are discussed in Sec. 12.6. The properties of the control signal
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under minimumvariance control depend critically on the sampling period. A
short sampling period gives a large variance of the control signal and a long
sampling period gives a small variance.

In some cases it is desired to trade variances of control and output signals.
This may be done by introducing the loss function

Jlq = E
(

y2(k) + ρu2(k)
)

(12.8)

The control law that minimizes this criterion is called the linear quadratic

control law.

Admissible Controls

It is assumed that the control law is such that u(k), that is, the value of the
control signal at time k, is a function of y(k), y(k−1), . . . and u(k−1), u(k−2), . . . .
Thus the computational delay is negligible in comparison with the sampling
period. It is very easy to modify the results to take delays in the computations
into account.

There are two versions of the theory. A linear control law may be postu
lated. It is then sufficient to assume that the disturbances e(i) and e( j) are
uncorrelated for i �= j. If e(i) and e( j) are assumed to be independent, it can be
shown that the optimalcontrol law is linear. The formula for the optimalcontrol
law is the same in both cases.

Minimum-Variance Control: An Example

The optimalcontrol problem defined by the model of (12.5) and the criterion of
(12.6) is solved in a special case. The solution, which is easily obtained from
first principles, gives good insight into the assumptions made. It also indicates
how the general problem should be solved.

Consider the firstorder system

y(k + 1) + ay(k) = bu(k) + e(k + 1) + ce(k) (12.9)

where hch < 1 and e(k) is a sequence of independent random variables with unit
variance.

Consider the situation at time k. The outputs y(k), y(k− 1), . . . have been
observed. The control u(k) should be determined so that the output is as close to
zero as possible. It follows from (12.9) that y(k+ 1)may be changed arbitrarily
by a proper choice of u(k). Because e(k + 1) is independent of y(k) and of the
terms of the righthand side of (12.9), it follows that

var y(k + 1) ≥ var e(k + 1) = 1 (12.10)

The term e(k) may be computed in terms of the known data y(k), y(k − 1), . . .
and u(k − 1), u(k − 2), . . . . When the variables y(k) and e(k) are known, the
control law

u(k) =
(
ay(k) − ce(k)

)
/b (12.11)
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gives
y(k + 1) = e(k + 1) (12.12)

which corresponds to the lower bound in (12.10). If the control law in (12.11)
is used in each step, Eq. (12.12) holds for all k. The computation of e(k) from
the data available at time k is then trivial and the control law in (12.11) can
be written as

u(k) = − c − a

b
y(k) (12.13)

The optimal control is thus a proportional feedback with the gain (c − a)/b.
To analyze the properties of the closedloop system under optimal control,

eliminate u between (12.9) and (12.13). This gives

y(k + 1) + c y(k) = e(k + 1) + ce(k)

Notice that the closedloop system has the characteristic polynomial

C(z) = z + c

This shows the importance of the assumption that the polynomial C(z) is stable.
This difference equation has the solution

y(k) = e(k) + (−c)k−k0

(

y(k0) − e(k0)
)

Because c is less than one in magnitude, the last term goes to zero as k −
k0 increases toward infinity. Thus control law in (12.13) gives the minimum
variance in steady state.

With this result, some observations are possible. The quantity −ay(k) +
bu(k) + ce(k) can be interpreted as the best estimate of y(k+ 1), given the data
available at time k. The quantity e(k+1) is the prediction error. The control law
in (12.13) implies that the control signal is chosen so that the predicted value
is equal to the reference value, which is zero in this case. The control error
is then equal to the prediction error. The solution to the minimumvariance
control problem is thus closely related to the solution of a prediction problem.
Therefore, the prediction problem is solved before the solution of the general
minimumvariance control problem is attempted.

12.3 Optimal Prediction

Prediction theory can be stated in many different ways, which differ in the
assumptions made on the process, the criterion, and the admissible predictors.
One formulation is given in Sec. 11.3. In this section the following assumptions
are made:

• The process to be predicted is generated by filtered white Gaussian noise.
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• The best predictor is the one that minimizes the meansquare prediction
error.

• An admissible mstep predictor for y(k + m) is an arbitrary function of
y(k), y(k − 1), . . . .

An intuitive derivation of a predictor is first given. The result is then formalized.

Heuristics

Consider the signal y generated by the model

y(k) = C(q)
A(q) e(k) = C∗(q−1)

A∗(q−1) e(k) (12.14)

where A∗ and C∗ are the reciprocals of A and C, that is, A∗(q−1) = q−nA(q), and
q−1 is the backwardshift operator. It is convenient to introduce this operator
because the discussion is based on causality. It is assumed that A and C are of
order n.

Consider the situation at time k. The variables y(k), y(k − 1), . . . have
been observed and it is desired to predict y(k + m). A formal series expansion
of C∗/A∗ in q−1 gives

y(k + m) = C∗(q−1)
A∗(q−1) e(k + m)

= e(k + m) + f1e(k + m − 1) + ⋅ ⋅ ⋅ + fm−1e(k + 1)
︸ ︷︷ ︸

Unknown at time k

+ fme(k) + fm+1e(k − 1) + ⋅ ⋅ ⋅
︸ ︷︷ ︸

Known at time k

(12.15)

The terms of the righthand side are all independent because e(k) is a sequence
of independent random variables. It follows from the model of (12.14) that if the
polynomial C is stable, then e(i) can be computed exactly from y(i), y(i− 1), . . .
using

e(k) = A∗(q−1)
C∗(q−1) y(k)

The first terms of (12.15) are independent of the data at time k. The second
part is known functions of the data available at time k. Thus it follows that the
optimal predictor is given by

ŷ(k + m h k) = fme(k) + fm+1e(k − 1) + fm+2e(k − 2) + ⋅ ⋅ ⋅

and that the prediction error is

ỹ(k + m h k) = e(k + m) + f1e(k + m − 1) + ⋅ ⋅ ⋅ + fm−1e(k + 1)

To provide a formal proof it remains to show how the numbers f i can be com
puted from A and C and how e(k) can be expressed in terms of past data.
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Main Result

The main result can be stated as follows.

THEOREM 12.1 OPTIMAL PREDICTION Let y(k) be a random process gen
erated by the model in (12.14), where all the zeros of the polynomial C(z) are
inside the unit disc, and e(k) is a sequence of independent random variables.
The minimumvariance predictor over m steps is given by

ŷ = ŷ(k + m h k) = qG(q)
C(q) y(k) = G∗(q−1)

C∗(q−1) y(k) (12.16)

where the polynomials F and G are the quotient and the remainder when
dividing qm−1C by A; that is,

qm−1C(q) = A(q)F(q) + G(q) (12.17)

The prediction error is a moving average

ỹ(k + m h k) = y(k + m) − ŷ(k + m h k) = F(q)e(k + 1) (12.18)

It has zero mean and the variance

E ỹ(k + m h k)2 =
(
1+ f 2

1 + ⋅ ⋅ ⋅ + f 2
m−1

)
σ 2 (12.19)

Proof. The polynomial F is monic of degree m−1 and G is of degree less
than n. Hence

F(q) = qm−1 + f1qm−2 + ⋅ ⋅ ⋅ + fm−1

G(q) = n0qn−1 + n1qn−2 + ⋅ ⋅ ⋅ + nn−1

We introduce

F∗(q−1) = 1+ f1q−1 + ⋅ ⋅ ⋅ + fm−1q−m+1

G∗(q−1) = n0 + n1q−1 + ⋅ ⋅ ⋅ + nn−1q−n+1

It follows from (12.17) that

C∗(q−1) = A∗(q−1)F∗(q−1) + q−mG∗(q−1) (12.20)

Equation (12.15) can then be written as

y(k + m) = C∗(q−1)
A∗(q−1) e(k + m) = F∗(q−1)e(k + m) + G∗(q−1)

A∗(q−1) e(k)

By using Equation (12.14) the signal e in the last term can be expressed in
terms of the data available at time k. Hence,

y(k + m) = F∗(q−1)e(k+ m) + G∗(q−1)
C∗(q−1) y(k)
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The first term of the righthand side is a linear function of e(k + 1), e(k + 2),
. . ., e(k + m), which are all independent of the data y(k), y(k− 1), y(k − 2), . . .
available at time k. The last term is a linear function of the data. Let ŷ be an
arbitrary function of y(k), y(k − 1), . . . . Then

E
(

y(k + m) − ŷ
)2

= E
(

F∗(q−1)e(k+ m)
)2

+ E
(

G∗(q−1)
C∗(q−1) y(k) − ŷ

)2

+ 2E
{(

F∗(q−1)e(k + m)
) (

G∗(q−1)
C∗(q−1) y(k) − ŷ

)}

(12.21)

The last term is zero because e(k + m), e(k + m − 1), . . ., and e(k + 1) have
zero mean values and are independent of y(k), y(k− 1), . . . . The predictor that
minimizes the meansquare prediction error is thus given by (12.16) and the
prediction error by (12.18). The proof is completed by taking the mean value of
the square of the prediction error (12.18). This gives (12.19).

Remark 1. Notice that the best predictor is linear. The linearity does not
depend critically on the minimumvariance criterion. If the probability density
of y(k) is symmetric, the predictor of (12.16) is optimal for all criteria of the
form En

(
(y(k + m) − ŷ)2

)
for symmetric n.

Remark 2. The assumption that e(i) and e( j) are independent for i �= j is
essential for the last term in (12.21) to vanish. If the variables are uncorrelated,
the term will still vanish if the predictor ŷ is restricted to being linear.

Remark 3. It follows from (12.18) that

ỹ(k + 1 h k) = y(k + 1) − ŷ(k + 1 h k) = e(k + 1)

The random variables e(k) can thus be interpreted as the innovations of the
process y(k) (compare with Sec. 10.4).

Remark 4. Notice that the function

J(m) = σ 2
(
1+ f 2

1 + ⋅ ⋅ ⋅ + f 2
m−1

)

is the variance of the prediction error over the time interval mh. The function
J(m) approaches the variance of y as m → ∞. A graph of the function J shows
how well the process may be predicted over different horizons. See Example 12.3.

Remark 5. The predictor discussed in this section is equivalent to the
steadystate predictor obtained using the Kalman filter in Sec.11.3 (see Exam
ple 11.6).

Calculation of the Optimal Predictor

It follows from (12.17) that F(q) is the quotient and G(q) the remainder when
dividing qm−1C(q) by A(q). The polynomials F and G can thus be determined by
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polynomial division. An explicit formula for the coefficients of the polynomials
can also be given. Equating the coefficients of equal powers of q in (12.17) gives
the following equations:

c1 = a1 + f1

c2 = a2 + a1 f1 + f2

...

cm−1 = am−1 + am−2 f1 + ⋅ ⋅ ⋅ + a1 fm−2 + fm−1

cm = am + am−1 f1 + ⋅ ⋅ ⋅ + a1 fm−1 + n0

cm+1 = am+1 + am f1 + ⋅ ⋅ ⋅ + a2 fm−1 + n1

...

cn = an + an−1 f1 + ⋅ ⋅ ⋅ + an−m+1 fm−1 + nn−m

0 = an f1 + an−1 f2 + ⋅ ⋅ ⋅ + an−m+2 fm−1 + nn−m+1

...

0 = an fm−1 + nn−1

These equations are easy to solve recursively. Compare the solution of the Dio
phantine equation in Chapter 5.

Example 12.2 Prediction

Consider the system (12.14) defined by the polynomials

A(q) = q2 − 1.5q + 0.7
C(q) = q2 − 0.2q + 0.5

and where e has unit variance. Determine first the threestepahead prediction of
the output. The identity (12.17) gives

q2(q2 − 0.2q + 0.5) = (q2 − 1.5q + 0.7)(q2 + f1q + f2) + n0q + n1

This gives the triangular linear system of equations

q3 : −0.2 = −1.5 + f1 f1 = 1.3
q2 : 0.5 = 0.7 − 1.5 f1 + f2 f2 = 1.75
q1 : 0 = 0.7 f1 − 1.5 f2 + n0 n0 = 1.715
q0 : 0 = 0.7 f2 + n1 n1 = −1.225

The prediction three steps ahead is thus given by

ŷ(k + 3 h k) = qG(q)
C(q) y(k) = 1.715q

2 − 1.225q
q2 − 0.2q + 0.5 y(k)

and the variance of the prediction error is

E ỹ2 = 1 + (1.3)2 + (1.75)2 = 5.7525
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Example 12.3 Influence of prediction horizon

Consider the process in Example 12.2. From (12.19) it follows that the variance of
the prediction error will increase with the prediction horizon. Also (12.17) shows
that the Fpolynomial is obtained from the division of the C and Apolynomials.
That is, the coefficients fi are the coefficients of the impulse response of the system.
Thus

y(k) = C(q)
A(q) e(k) = q2 − 0.2q + 0.5

q2 − 1.5q + 0.7 e(k)

=
(
1 + 1.3q−1 + 1.75q−2 + 1.715q−3 + ⋅ ⋅ ⋅

)
e(k) =

∞∑

j=0
f j e(k − j)

and the prediction loss is

E ỹ2(k + m h k) = σ 2
m−1∑

j=0
f 2j

Figure 12.2 shows the variance of the prediction error for different values of the
prediction horizon m. It is seen that the variance of the prediction error is mono
tonically increasing with m. Figure 12.3 shows the output, the predicted output,
and the accumulated prediction loss,

∑(
y(k) − ŷ(k h k − m)

)2
, for different predic

tion horizons.

The Case When C Has Zeros on the Unit Circle

The predictor of (12.16) is a dynamic system with the characteristic polynomial
C(z). The assumption that C has all its zeros inside the unit disc thus guar
antees that the predictor is stable in steady state. The initial conditions are
irrelevant because their influence will decay exponentially.

It follows from the spectral factorization that C may be chosen to have its
zeros inside the unit disc or on the unit circle. The zeros outside the unit disc
is mirrored in the unit circle. Compare with Example 12.1. Thus it remains to
discuss the case when C has zeros on the unit circle.
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Figure 12.2 The variance of the prediction error as function of the predic
tion horizon m for the system in Example 12.3.
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 ŷ

(b)

0 50 100
−10

0

10

y
  
a
n

d
 ŷ
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Figure 12.3 The process output (dashed) and the predicted output (solid)
for Example 12.3 when (a) m = 1, (b) m = 3, (c) m = 5, and (d) the
accumulated prediction loss,

∑(
y(k) − ŷ(k h k − m)

)2
, for m = 1 (dashed

dotted), m = 2 (dashed), m = 3 (solid), and m = 5 (dotted).

Example 12.4 Zeros on the unit circle

Consider the process

y(k) = e(k) − e(k − 1) (12.22)

In this case the polynomial C(z) = z −1 has a zero on the unit circle. Applying the
previous methods formally gives the onestep predictor

ŷ(k + 1 h k) = −e(k)

Attempting to calculate e(k) from y(k), y(k − 1), . . . , y(k0) as was done previously
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gives

e(k) = e(k0 − 1) +
k∑

i=k0

y(i) = e(k0 − 1) + z(k)

The presence of the term e(k0 − 1), which does not go to zero as k0 → −∞, shows
the consequences of C being unstable. The Kalman filtering theory can, however,
be used to determine the optimal predictor. The signal given by (12.22) can be
written as

x(k + 1) = e(k)
y(k) = −x(k) + e(k)

where R1 = R2 = R12 = σ 2 with the notations used in Sec. 11.3. The Kalman filter
is

x̂(k + 1 h k) = K(k)
(

y(k) + x̂(k h k − 1)
)

P(k + 1) = σ 2P(k)
P(k) + σ 2

K(k) = σ 2

P(k) + σ 2

with the initial conditions
x̂(k0 h k0 − 1) = 0

P(k0) = σ 2

The predictor for the output is

ŷ(k + 1 h k) = −x̂(k + 1 h k) = −K(k)
(

y(k) − ŷ(k h k − 1)
)

Simple calculations give

ŷ(k + 1 h k) = − 1
k − k0 + 2

k−k0∑

n=0
(n + 1)y(k0 + n)

The optimum predictor is thus a timevarying system. Notice that the influence
of the initial condition y(k0) goes to zero at the rate 1/(k − k0 + 2). This is much
slower than in the case of stable polynomials C.

It follows from the example that the optimal predictor is a timevarying system
if the polynomial C has zeros on the unit circle. Such models should be avoided
if timeinvariant predictors are desired. Unfortunately, this fact is not always
noticed, as Example 12.5 illustrates.

Example 12.5 How to model offsets

The model
A(q)y(k) = C(q)e(k) + b

where b is an unknown constant, represents a signal with an offset. The constant
b can be eliminated by taking differences. Hence,

(q − 1)A(q)y(k) = (q − 1)C(q)e(k)
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The common factor q − 1 can be eliminated by regarding ∆ y(k) = (q − 1)y(k) as
the output. The model

A(q)∆ y(k) = (q − 1)C(q)e(k) = C̃(q)e(k)

is then obtained. In this model the polynomial C̃ apparently has a zero on the unit
circle. This model is, however, not very desirable because the optimal predictor is
a timevarying system. It is much better to model an offset as a Wiener process.
This leads to a process model with A(1) = 0 that is unstable with a stationary
predictor.

Other reasons for avoiding models where the polynomial C(z) has zeros close
to the unit circle are given in Sec. 12.6.

12.4 Minimum-Variance Control

To determine the minimumvariance control law, the special case when the poly
nomial B in (12.5) is stable is discussed first. This means that the process dy
namics have a stable inverse. With some abuse of language, this case is also
called the minimumphase case because the pulsetransfer function has all its
zeros inside the unit disc. The solution to the control problem is very simple
in this special case. The solution also gives insight into the properties of the
control problem.

Systems with Stable Inverses

By introducing the backwardshift operator q−1, the model in (12.5) can be
written as

y(k) = B(q)
A(q) u(k) + C(q)

A(q) e(k)

= B∗(q−1)
A∗(q−1) q−du(k) + C∗(q−1)

A∗(q−1) e(k)
(12.23)

where
d = deg A − deg B > 0

is the pole excess of the system (see Sec. 2.6). Further, deg A = deg C = n. The
reciprocal polynomials are introduced to make the discussion based on causality
arguments more transparent.

It follows from (12.23) that

y(k + d) = C∗(q−1)
A∗(q−1) e(k + d) + B∗(q−1)

A∗(q−1) u(k)

= F∗(q−1)e(k + d) + G∗(q−1)
A∗(q−1) e(k) + B∗(q−1)

A∗(q−1) u(k)
(12.24)
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where Equation (12.20) with m = d has been used to obtain the last equality.
The first term of the righthand side is independent of the data available at
time k and thus also of the second and third terms. The second term can be
computed exactly in terms of data available at time k. To do this, the variable
e(k) is given by (12.23); that is,

e(k) = A∗

C∗
y(k) − q−d B∗

C∗
u(k)

where the arguments of the polynomials have been dropped to simplify the
writing. Using this expression for e, Eq. (12.24) can be written as

y(k + d) = F∗e(k + d) + G∗

C∗
y(k) − q−d B∗G∗

A∗C∗
u(k) + B∗

A∗
u(k)

= F∗e(k + d) + G∗

C∗
y(k) + B∗F∗

C∗
u(k)

(12.25)

Now let u(k) be an arbitrary function of y(k), y(k−1), . . .and u(k−1), u(k−2), . . . .
Then

Ey2(k + d) = E
(
F∗e(k + d)

)2 + E
(

G∗

C∗
y(k) + B∗F∗

C∗
u(k)

)2

(12.26)

The mixed terms vanish because e(k+ d), . . ., e(k+ 1) are independent of y(k),
y(k− 1), . . . and u(k), u(k− 1), . . . . Because the last term in (12.26) is nonneg
ative, it follows that

Ey2(k + d) ≥
(
1+ f 2

1 + ⋅ ⋅ ⋅ + f 2
d−1

)
σ 2

where equality is obtained for

u(k) = − G∗(q−1)
B∗(q−1)F∗(q−1) y(k) = − G(q)

B(q)F(q) y(k) (12.27)

which is the desired minimumvariance control law. The result can be summa
rized as follows.

THEOREM 12.2 MINIMUMVARIANCE CONTROL—STABLE INVERSE Consider
a process described by (12.5), where e(k) is a sequence of independent random
variables with zero mean values and standard deviationsσ . Let the polynomials
B and C have all their zeros inside the unit disc. The minimumvariance control
law is then given by (12.27), where the polynomials F∗ and G∗ are given by
(12.20) with m = d. This control law gives the output

y(k) = F∗(q−1)e(k) = e(k) + f1e(k − 1) + ⋅ ⋅ ⋅ + fd−1e(k − d + 1)

in steady state.
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Remark 1. The theorem still holds when e(i) and e( j) are uncorrelated
for i �= j if a linear control law is postulated.

Remark 2. The result is closely related to the solution of the prediction
problem (Theorem 12.1). Identity (12.17) or (12.20) was used in both cases.
The last two terms in (12.25) can be interpreted as the dstep prediction of
the output. The minimumvariance strategy is thus obtained by predicting the
output d steps ahead and choosing a control that makes the prediction equal to
the desired output. The stochasticcontrol problem can thus be separated into
two problems, one stochasticprediction problem and one deterministiccontrol
problem. Theorem 12.2 can therefore be interpreted as a separation theorem.

Remark 3. The error under minimumvariance control is a moving av
erage of order d − 1. Thus the covariance function of the regulation error will
vanish for arguments larger than d − 1. This fact can be used for diagnosis to
determine if a minimumvariance strategy is used.

Remark 4. All process zeros are canceled when the control law of (12.27)
is used. The consequences of this are discussed later.

It is very easy to calculate the minimumvariance control law for a given
model (12.5), as illustrated by the following example.

Example 12.6 Minimumvariance control

Consider a system given by (12.5), where

A(q) = q3 − 1.7q2 + 0.7q
B(q) = q + 0.5
C(q) = q3 − 0.9q2

The pole excess is d = 2. Division of qd−1C(q) by A(q) gives the quotient

F(q) = q + 0.8

and the remainder

G(q) = 0.66q2 − 0.56q

The minimumvariance control law is thus

u(k) = − q(0.66q − 0.56)
(q + 0.5)(q + 0.8) y(k)

The variance of the output when the optimal controller is used is

Ey2 = 1 + (0.8)2 = 1.64
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Example 12.7 Influence of the delay

Let the process be described by

A∗(q−1) = 1− 1.5q−1 + 0.7q−2

B∗(q−1) = q−d(1+ 0.5q−1)
C∗(q−1) = 1− 0.2q−1 + 0.5q−2

Compute the minimumvariance controller when d = 1, 3, or 5. The controller is
given by (12.27), where the Fpolynomial is given in Example 12.3. Figure 12.4
shows the output and input when the minimumvariance controller is used for
different delays in the process. When d = 1, d = 3, and d = 5 the output variance
is 1, 5.8, and 10.5, respectively.

Interpretation as Pole-Placement Design

The minimumvariance control law can be interpreted in terms of the pole
placement design discussed in Chapter 5. To see the relationships, the closed
loop system obtained when the control law of (12.27) is applied to the system
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Figure 12.4 Simulation of the system in Example 12.7 with the control
law given by Theorem 12.2. The output (left) and the input (right) when (a)
d = 1, (b) d = 3, and (c) d = 5.
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of (12.5) is analyzed. Equations (12.5) and (12.27) can be written as



A(q) −B(q)
G(q) F(q)B(q)








y(k)
u(k)



 =



C(q)
0



 e(k) (12.28)

The characteristic polynomial of the closedloop system is the determinant of
the matrix on the lefthand side of (12.28). Hence,

A(q)F(q)B(q) + G(q)B(q) = qd−1B(q)C(q) (12.29)

where Eq. (12.17), with m = d, is used to obtain the first equality. The closed
loop system is of order 2n − 1. It has 2n − d poles at the zeros of B and C and
an additional d − 1 poles at the origin.

The minimumvariance control strategy can be interpreted as a poleplace
ment design, where the poles are placed at the zeros given by (12.29). The
similarities to pole placement are seen even more clearly if the control law of
(12.27) is written as

u(k) = − G(q)
B(q)F(q) y(k) = − S(q)

R(q) y(k)

where S = G and R = FB [compare with Eq. (5.2)]. Multiplication of (12.17)
by B gives

qd−1C(q)B(q) = A(q)F(q)B(q) + G(q)B(q) = A(q)R(q) + B(q)S(q)
This equation is a special case of the Diophantine equation in (5.22) when
B+ = B and with Ac = qd−1B and Ao = C.

Systems with Unstable Inverses

Remark 4 to Theorem 12.2 mentions that the control law given by (12.27) can
cels all process zeros. If there are process zeros outside the unit disc, the closed
loop system will then have unstable modes that are unobservable from the
output. The implications of this are discussed first. Other control laws that do
not require all zeros of B(z) to be inside the unit disc are then presented.

Solving Eq. (12.28) for y and u gives

y(k) = F(q)
qd−1

e(k)

and

u(k) = − G(q)
qd−1B(q) e(k)

The necessity of the assumption that B is stable is clearly seen from these
equations. If the polynomial B is unstable, the system has unstable modes,
which are excited by the disturbance. These unstable modes are coupled to the
control signal and the control signal grows exponentially. However, the output
signal remains bounded because the unstable modes are not coupled to the
output. An example illustrates what happens.
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Figure 12.5 Simulation of the system in Example 12.8 with the control
law given by Theorem 12.2 that cancels an unstable process zero.

Example 12.8 Cancellation of unstable process zero

Consider a system described by the polynomials

A(z) = (z − 1)(z − 0.7)
B(z) = 0.9z + 1
C(z) = z(z − 0.7)

The polynomial B(z) has a zero z = −10/9, which is outside the unit disc. A
simulation when using (12.27) is shown in Fig. 12.5. The presence of the unstable
mode is clearly seen in the control signal, although it is not noticeable in the system
output. If the simulation is continued, the control signal will finally be so large that
overflow or numerical errors occur. In a practical problem the signal will quickly
be so large that the linear approximation is no longer valid. After a short time the
unstable mode will then be noticeable in the output.

The minimumvariance control law is extended to the case when the polynomial
B has zeros outside the unit disc in Theorem 12.3.

THEOREM 12.3 MINIMUMVARIANCE CONTROL—GENERAL CASE Consider a
system described by (12.5). Factor the polynomial B(z) as

B(z) = B+(z)B−(z) (12.30)

where B−∗(z) is monic. All zeros of the polynomial B+(z) are inside the unit disc
and all zeros of B−(z) are outside the unit disc or on the unit circle. Assume that
all the zeros of polynomial C(z) are inside the unit disc and that the polynomials
A(z) and B−(z) do not have any common factors. The minimumvariance control
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law is then given by

u(k) = − G(q)
B+(q)F(q) y(k) (12.31)

where F(q) and G(q) are polynomials that satisfy the Diophantine equation

qd−1C(q)B−∗(q) = A(q)F(q) + B−(q)G(q) (12.32)

in which deg F = d + deg B− − 1 and degG < deg A = n.

Proof. The proof is based on a clever trick introduced by Wiener in his
original work on prediction. An alternative method is used in the proof of The
orem 12.4. Consider the operator

1
q + a

where hah > 1. This operator is normally interpreted as a causal unstable (un
bounded) operator. Because hah > 1 and the shift operator has the norm iqi = 1,
the series expansion

1
q + a

= 1
a

1
1+ q/a

= 1
a

(

1− q

a
+ q2

a2
− ⋅ ⋅ ⋅

)

converges. Thus the operator (q+ a)−1 can be interpreted as a noncausal stable
operator; that is,

1
q + a

y(k) = 1
a

(

y(k) − 1
a

y(k + 1) + 1
a2

y(k + 2) − ⋅ ⋅ ⋅
)

With this interpretation, it follows that

(q + a)
(
1

q + a
y(k)

)

= y(k)

The calculations required for the proof are conveniently done using the back
wardshift operator. It follows from the process model of (12.5) that

y(k + d) = B∗(q−1)
A∗(q−1) u(k) + C∗(q−1)

A∗(q−1) e(k + d)

We introduce

w(k) = B−(q−1)
B−∗(q−1) y(k)

where the operator 1/B−∗(q−1) is interpreted as a noncausal stable operator.
The signals y and w have the same steadystate variance because B− and B−∗

are reciprocal polynomials and
∣
∣
∣
∣

B−(e−iω)
B−∗(e−iω)

∣
∣
∣
∣

= 1
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An admissible control law that minimizes the variance of w also minimizes the
variance of y. It follows that

w(k + d) = B+∗(q−1)B−(q−1)
A∗(q−1) u(k) + C∗(q−1)B−(q−1)

A∗(q−1)B−∗(q−1) e(k + d) (12.33)

The assumption that A(z) and B−(z) are relatively prime guarantees that
(12.32) has a solution. Equation (12.32) implies that

C∗(q−1)B−(q−1) = A∗(q−1)F∗(q−1) + q−dB−∗(q−1)G∗(q−1)

Division by A∗ B−∗ gives

C∗(q−1)B−(q−1)
A∗(q−1)B−∗(q−1) = F∗(q−1)

B−∗(q−1) + q−d G∗(q−1)
A∗(q−1)

By using this equation, (12.33) can be written as

w(k+ d) = F∗(q−1)
B−∗(q−1) e(k + d) + B+∗(q−1)B−(q−1)

A∗(q−1) u(k) + G∗(q−1)
A∗(q−1) e(k) (12.34)

Because the operator 1/B−∗(q−1) is interpreted as a bounded noncausal operator
and because deg F∗ = d + deg B− − 1, it follows that

F∗(q−1)
B−∗(q−1) e(k + d) = α 1e(k + 1) + α 2e(k + 2) + ⋅ ⋅ ⋅

These terms are all independent of the last two terms in (12.34). Using the
arguments given in detail in the proof of Theorem 12.2, we find that the optimal
control law is obtained by putting the sum of the last two terms in (12.34) equal
to zero. This gives

u(k) = − G∗(q−1)
B+∗(q−1)B−(q−1) e(k) (12.35)

and

y(k) = B−∗(q−1)
B−(q−1) w(k) = F∗(q−1)

B−(q−1) e(k) = F(q)
qd−1B−∗(q) e(k) (12.36)

Elimination of e(k) between (12.35) and (12.36) gives

u(k) = − G∗(q−1)
B+∗(q−1)F∗(q−1) y(k)

The numerator and the denominator have the same degree because degG < n

and the control law can then be rewritten as (12.31).
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Remark 1. Only the stable process zeros are canceled by the optimal
control law.

Remark 2. It follows from the proofs of Theorems 12.2 and 12.3 that the
variance of the output of a system such as (12.5)may have several local minima
if the polynomial B(z) has zeros outside the unit disc. There is one absolute
minimum given by Theorem 12.2. However, this minimum will give control
signals that are infinitely large. The local minimum given by Theorem 12.3 is
the largest of the local minima. The control signal is bounded in this case.

Remark 3. The factorization of (12.30) is arbitrary because B+ could be
multiplied by a number and B− could be divided by the same number. It is
convenient to select the factors so that the polynomial B−∗(q) is monic.

Example 12.9 Minimumvariance control with unstable process zero

Consider the system in Example 12.8 where d = 1 and

B+(z) = 1
B−(z) = B(z)

B−∗(z) = z + 0.9

Equation (12.32) becomes

z(z − 0.7)(z + 0.9) = (z − 1)(z − 0.7)(z + f1) + (0.9z + 1)(n0z + n1)

Let z = 0.7, z = 1, and z = −10/9. This gives

0.7n0 + n1 = 0
n0 + n1 = 0.3

f1 = 1

The control law thus becomes

u(k) = − G(q)
B+(q)F(q) y(k) = − q − 0.7

q + 1 y(k)

The output is

y(k) = F(q)
B−∗(q) e(k − d + 1) = q + 1

q + 0.9 e(k) = e(k) + 0.1
q + 0.9 e(k)

The variance of the output is

E y2 =
(

1+ 0.12

1 − 0.92
)

σ 2 = 20
19

σ 2 = 1.05σ 2

which is about 5% larger than using the controller in Example 12.8. The variance
of the control signal is 275σ 2/19 = 14.47σ 2 . A simulation of the control law is
shown in Fig. 12.6. The figure that the controller performs well. Compare also with
Fig. 12.5, which shows the effect of canceling the unstable zero. Figure 12.7 shows
the accumulated output loss

∑
y2(k) and input loss ∑

u2(k) when the controllers
in Example 12.8 and this example are used. The controller (12.27) gives lower
output loss, but an exponentially growing input loss, and the controller based on
(12.31) gives an accumulated input loss that grows linearly with time.
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Figure 12.6 Simulation of the system in Example 12.9.
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Figure 12.7 The accumulated output loss
∑

y2(k) and input loss ∑
u2(k)

when the controllers (12.31) (solid) and (12.27) (dashed) are used.

A Pole-Placement Interpretation

Simple calculations show that the characteristic equation of the closedloop sys
tem obtained from (12.5) and (12.31) is

zd−1B+(z)B−∗(z)C(z) = 0

Thus the control law of (12.31) can be interpreted as a poleplacement controller,
which gives this characteristic equation.
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Multiplication of (12.32) by B+ gives the equation

A(z)R(z) + B(z)S(z) = zd−1B+(z)B−∗(z)C(z) (12.37)

where R(z) = B+(z)F(z) and S(z) = G(z). This equation is the same Dio
phantine equation that was used in the poleplacement design [compare with
Eq. (5.22)]. The closedloop system has poles corresponding to the observer dy
namics, to the stable process zeros, and to the reflections in the unit circle of
the unstable process zeros. Notice that the transfer function B(z)/A(z)may be
interpreted as having d = deg A − deg B zeros at infinity. The reflections of
these zeros in the unit circle also appear as closedloop poles, which are located
at the origin.

Equation (12.37) shows that the closedloop system is of order 2n − 1 and
that d−1 of the poles are in the origin. A complete controller consisting of a full
Kalman filter observer and feedback from the observed states gives a closed
loop system of order 2n. The “missing” pole is due to a cancellation of a pole at
the origin in the controller. This is further discussed in Sec. 12.5.

12.5 Linear Quadratic Gaussian (LQG) Control

The optimal control problem for the system of (12.5) with the criterion of (12.8)
is now solved. The minimumvariance control law discussed in Sec. 12.4 can
be expressed in terms of a solution to a polynomial equation. The solution to
the LQGproblem can be obtained in a similar way. Two or three polynomial
equations are needed, however. These equations are discussed before the main
result is given.

The name Gaussian in LQG is actually slightly misleading. The proofs
show that the probability distribution is immaterial as long as the random
variables e(k) are independent.

Using the statespace solution it is possible to get an interpretation of the
properties of the optimal solution. These properties can be expressed in terms
of the poles of the closedloop system. In this way we can establish a connection
between LQG design and pole placement.

Properties of the State-Space Solution

The problems discussed in this chapter was solved using statespace methods
in Chapter 11. A statespace representation of the model of (12.5) is first given.
For this purpose it is assumed that the model is normalized, so that deg C(z) =
deg A(z). The model of (12.5) can then be represented as

x(k + 1) = Φx(k) + Γu(k) + K e(k)
y(k) = Cx(k) + e(k)



470 Optimal Design Methods: A Polynomial Approach

where

Φ =





−a1 1 0 ⋅ ⋅ ⋅ 0

−a2 0 1 ⋅ ⋅ ⋅ 0
...

...
...
. . .

...

−an−1 0 0 ⋅ ⋅ ⋅ 1

−an 0 0 ⋅ ⋅ ⋅ 0





Γ =





b1

b2

...

bn−1

bn





K =





c1 − a1

c2 − a2

...

cn−1 − an−1

cn − an





C =


 1 0 ⋅ ⋅ ⋅ 0




(12.38)
Because this is an innovations representation if the matrix Φ − K C has all its
eigenvalues inside the unit disc. The steadystate Kalman filter is then obtained
by inspection:

x̂(k + 1 h k) = Φ x̂(k h k − 1) + Γu(k) + K
(

y(k) − Cx̂(k h k − 1)
)

(12.39)

The Kalman filter has the characteristic polynomial

det
(
zI − (Φ − K C)

)
= C(z) (12.40)

This implies that C(z) are some of the closedloop poles. Assume a computational
delay of one sampling period in the control law. The optimal control law is then

u(k) = −Lx̂(k h k − 1)

and the transfer function of the controller is

Hr(z) = −L(zI − Φ + K C + ΓL)−1 K = − S(z)
R(z) (12.41)

where R(z) = det(zI− Φ + K C + ΓL), deg R(z) = n, and deg S(z) < n. It follows
from this discussion and Sec. 11.4 that the closedloop poles are C(z) and

P(z) = det(zI − Φ + ΓL)

where P(z) is obtained from the algebraic Riccati equation.
It is more complicated to derive the control law when the admissible control

is such that u(k) is a function of y(k), y(k − 1), . . . . The loss function (12.8)
corresponds to (11.9) with Q1 = CT C, Q12 = 0, and Q2 = ρ. From (11.19) and
(11.24) it follows that L = LvΦ. The results from statespace theory (Remark
2 of Theorem 11.7) show that the control law is

u(k) = −Lx̂(k h k) − Lvv̂(k h k)
= −Lx̂(k h k) − Lv K

(
y(k) − Cx̂(k h k − 1)

)

= −Lv(Φ − K C)x̂(k h k − 1) − Lv K y(k)
(12.42)
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where x̂(k h k−1) is given by (12.39). The controller is still of order n. Eliminat
ing x̂ between (12.39) and (12.42), we find that the controller can be described
by the relation

u(k) = −Lv(Φ − K C)(qI − Φ + K C)−1
(

Γu(k) + K y(k)
)

− Lv K y(k)

= −Lv(Φ − K C)(qI − Φ + K C)−1Γu(k)
− Lv(Φ − K C + qI − Φ + K C)(qI − Φ + K C)−1K y(k)

= −Lv(Φ − K C)(qI − Φ + K C)−1Γu(k)
− Lv q(qI − Φ + K C)−1K y(k)

(12.43)

Introducing R2(q) = det(qI − Φ + K C) we get

u(k) = − R1(q)
R2(q) u(k) − S(q)

R2(q) y(k)

where deg R1(z) = n, deg R2(z) < n and deg S(z) = n with S(0) = 0. Hence

u(k) = − S(q)
R1(q) + R2(q) y(k) = − S(q)

R(q) y(k) (12.44)

We thus find that the controller has the property deg R(z) = deg S(z) = n.
Furthermore the condition S(0) = 0 implies that deg S∗(z) < n.

Spectral Factorization

The LQproblem is solved in Sec. 11.4 using the statespace approach, which
led to a steadystate Riccati equation. It follows from the Riccati equation that

rP(z)P(z−1) = ρA(z)A(z−1) + B(z)B(z−1) (12.45)

where the monic polynomial P(z) is the characteristic polynomial of the closed
loop system. [see Eq. (11.40)]. The closedloop characteristic polynomial can be
obtained by solving a steadystate Riccati equation. An alternative is to find a
polynomial P(z) that satisfies (12.45) directly. A feedback that gives the desired
closedloop poles can then be determined by pole placement. The problem of
finding a polynomial P(z) that satisfies (12.45) is called spectral factorization.

First, consider a polynomial of the form

F(z) = f0z2n + f1z2n−1 + ⋅ ⋅ ⋅ + fn−1zn+1 + fnzn + fn−1zn−1 + ⋅ ⋅ ⋅ + f1z + f0

Such a polynomial is selfreciprocal because

F∗(z) = z2nF(z−1) = F(z)

It then follows that if z = a is a zero of F(z), then z = 1/a is also a zero. More
over, if the coefficients f i are real, then z = ā and z = 1/ā are also zeros, where
ā is the complex conjugate of a. The following result can now be established.
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LEMMA 12.1 Let the real polynomials A(z) and B(z)be relatively prime
with deg A(z) > deg B(z). Then there exists a unique polynomial P(z) with
deg P(z) = deg A(z) = n and all its zeros inside the unit disc or on the unit
circle such that (12.45) holds. If ρ > 0, then P(z) has no zeros on the unit
circle.

Proof. A selfreciprocal polynomial is obtained if the righthand side of
(12.45) is multiplied by zn. The zeros of the righthand side are thus mirror
images with respect to the unit circle. Because the coefficients are real, the
zeros are also symmetric with respect to the real axis. The righthand side of
(12.45) cannot have zeros on the unit circle because if z = eiω is such a zero,
then

ρA(eiω )A(e−iω) + B(eiω)B(e−iω) = ρhA(eiω )h2 + hB(eiω)h2 = 0
As ρ > 0, this implies that z = exp(iω) is a zero of both A(z) and B(z), which
contradicts the assumption that A(z) and B(z) are relatively prime. The condi
tion deg P(z) = n ensures a unique P(z).

Remark 1. By introducing reciprocal polynomials, Eq. (12.45) can be
written as

rP(z)P∗(z) = ρA(z)A∗(z) + zdB(z)B∗(z) (12.46)
where P∗(z) = znP(z−1), and so on.

Remark 2. If P(z) satisfies (12.45) so does zlP(z) , where l is an arbitrary
integer. To obtain a unique P we can either specify the degree of P or choose P

as the polynomial of lowest degree that satisfies (12.45). For a control problem
it is natural to interpret P(z) as the closed loop characteristic polynomial under
state feedback. With this interpretation it is natural to require that deg P(z) =
deg A(z) = n. Notice that it is possible to find a P of lower degree when ρ = 0
or when A(0) = 0.

Conceptually the spectralfactorization problem can be solved by finding
the zeros of the righthand side of (12.45) and sorting them. There are also
efficient recursive algorithms for solving the problem.

Heuristic Discussion

The LQGproblem will now be related to the poleplacement problem. We will
first give the solution heuristically. A formal solution will be given later. First,
recall that the poleplacement problem required specifications of the closedloop
characteristic polynomial, which were chosen as Ac(z)Ao(z) when Ao was inter
preted as the observer polynomial. In the LQGproblem the observer polynomial
is simply Ao(z) = C(z). Compare Theorem 12.1. The polynomial Ac(z) is equal
to the polynomial P(z) obtained from the spectral factorization. When the poly
nomials Ao(z) = C(z) and Ac(z) = P(z) are specified we can now expect that
the optimal control law is given by

u(k) = − S(q)
R(q) y(k)
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where R(z) and S(z) are solutions to the Diophantine equation

A(z)R(z) + B(z)S(z) = P(z)C(z) (12.47)

The structure of the admissible control laws is determined by the polynomials
R(z) and S(z). To describe a control law such that u(k) is a function of y(k),
y(k − 1), . . ., and u(k − 1), u(k − 2), . . ., that is, no delay in the controller, the
polynomials R(z) and S(z) should have the same degree. To describe a control
law such that u(k) is a function of y(k−1), y(k−2), . . ., and u(k−1), u(k−2), . . .,
that is, one sampling period delay in the controller, the pole excess of S(z)/R(z)
should be one. The complexity of the control law is determined by the orders of
the polynomials R(z) and S(z).

There are many polynomials R(z) and S(z) that satisfy (12.47). Compare
the discussion in Sec. 5.3. Among all choices we will determine solutions that
minimize the loss function (12.8). Before making a formal solution we will dis
cuss the problem heuristically.

The solution to the LQG problem based on the state space approach gives
the additional constraints that have to be imposed on the solution to (12.47).
Equation (12.41) gave a polynomial interpretation of the state space solution.
The optimal controller was in fact characterized by the following conditions
on the controller polynomials: deg R(z) = n and deg S(z) < n. If A and B are
relative prime the optimal LQGcontroller is thus the unique solution to (12.47)
with deg S(z) < deg A(z).

The problem is more complicated when there is no delay in the con
troller. The transfer function of the optimal controller in this case was given
by Eq. (12.44) with deg R(z) = deg S(z) = n, and and deg S∗(z) < n. These
conditions are more conveniently expressed using another version of the Dio
phantine equation (12.47). Assuming deg R(z) = deg S(z) = n, writing (12.47)
with argument z−1 and multiplying it by z2n we find that

A∗(z)R∗(z) + zdB∗(z)S∗(z) = P∗(z)C∗(z) (12.48)

where

d = deg A(z) − deg B(z)

If deg A∗(z) = n the optimal controller is then the unique solution to (12.48)
with deg S∗(z) < deg A∗(z). Notice, however, that this does not give the optimal
solution when deg A∗(z) < n, i.e. when A(0) = 0. This case will be discussed
in the next section where we give a direct solution of the LQG problem with
polynomial calculations.

Formal Proof

After the informal discussion we will now give a formal proof of the statements.
For this purpose we will first prove a preliminary result.
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LEMMA 12.2 Let the polynomial P(z) be a solution to the spectral fac
torization problem (12.46) and let A(z) be monic. Assume that the polynomials
A(z) and B(z) do not have common roots outside the unit disc or on the unit
circle; then there exists a unique solution to the equations

A∗(z)X (z)+ rP(z)S∗(z) = B(z)C∗(z)
zdB∗(z)X (z)− rP(z)R∗(z) = −ρA(z)C∗(z)

(12.49)

with deg X (z) < n, deg R∗(z) ≤ n and deg S∗(z) < n, where n = deg A(z).
Proof. First, assume that polynomial P(z) has distinct zeros zi. Since

P(z) is stable we have hzih < 1. The values A∗(zi) and B∗(zi) cannot vanish
simultaneously because this would contradict the assumption that A(z) and
B(z) do not have common unstable factors. Evaluating (12.49) for z = zi we get

A∗(zi)X (zi) = B(zi)C∗(zi)
zd

i B∗(zi)X (zi) = −ρA(zi)C∗(zi)
(12.50)

If both A∗(zi) and B∗(zi) are different from zero, both equations give the same
result, since it follows from (12.46) that

B(zi)
A∗(zi)

= − ρA(zi)
zd

i B∗(zi)

If A∗(zi) = 0 and B∗(zi) �= 0 it follows from (12.46) that B(zi) = 0. Since A(z)
is monic it also follows that A∗(0) = 1. This implies that hzih �= 0. The equation

A∗(zi)X (zi) = B(zi)C∗(zi)

is trivially satisfied and the solution to (12.50) is

X (zi) = − ρA(zi)C∗(zi)
zd

i B∗(zi)

A similar argument shows that X (zi) is unique also when B∗(zi) = 0
and A(zi) �= 0. We can thus determine deg P values X (zi). Using Lagrange’s
interpolation formula the polynomial X (z) of degree deg P − 1 which satisfies
(12.50) is thus unique.

It follows from the construction of the polynomial X (z) that the polynomial
A∗(z)X (z)− B(z)C∗(z) vanishes for the zeros zi of P(z). This implies that it is
divisible by P(z). The quotient

S∗(z) = A∗(z)X (z)− B(z)C∗(z)
rP(z)

is thus a polynomial. It has degree

deg S∗ ≤max(deg A∗ + deg P − 1,deg B + deg C∗) − deg P < n (12.51)

476 Optimal Design Methods: A Polynomial Approach

Using the same argument we also find that

R∗(z) = zdB∗(z)X (z)+ ρA(z)C∗(z)
rP(z)

is a polynomial of degree

deg R∗ ≤max(d + deg B∗ + deg P − 1,deg A + deg C∗) − deg P ≤ n (12.52)

The solution X (z), S∗(z) and R∗(z) to (12.49) is continuous in the coefficients
of polynomials A(z) and B(z). If polynomial P(z) has multiple zeros we can the
perturb the coefficients of A(z) and B(z) to obtain a P(z) with distinct zeros
and obtain the results by a limiting procedure. The details of this argument are
delicate.

Remark 1. Notice that if one solution, X0, R∗
0, S∗

0, to Eq. (12.49) has
been obtained all other solutions are given by

X (z) = X0(z) + Q(z)rP(z)
R∗(z) = R∗

0(z) + Q(z)zdB∗(z)
S∗(z) = S∗

0(z) − Q(z)A∗(z)
(12.53)

where Q(z) is an arbitrary polynomial. This is easily verified by direct insertion
into the equation.

Remark 2. The polynomials R(z) and S(z) are given by R(z) = znR∗(z−1)
and S(z) = znS∗(z−1). The conditions A∗(0) = P∗(0) = C∗(0) = 1 together with
Eq. (12.53) imply that R∗(0) = 1, hence deg R(z) = n and deg S(z) ≤ n and
deg S∗(z) < n.

Remark 3. Eliminating X by multiplying the first equation by zdB∗(z)
and the second by A∗(z) and subtracting gives

rPS∗ zdB∗ + rPA∗ R∗ = B C∗zdB∗ + ρA∗ C∗ = rPP∗ C∗

where the second equality follows from (12.46). Dividing by rP shows that the
the polynomials R∗ and S∗ satisfy the Diophantine equation (12.48).

Remark 4. In the following we will need another property of the solu
tions to Eq. (12.49). Adding the first equation multiplied by ρA and the second
multiplied by B gives:

(ρAA∗ + zdB B∗)X + ρrAPS∗ − rPB R∗ = 0

Using the spectral factorization condition (12.46) and dividing by rP now gives:

P∗(z)X (z) = B(z)R∗(z) − ρA(z)S∗(z) (12.54)

After these preliminaries we will now solve the LQGproblem with poly
nomial calculations.
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THEOREM 12.4 LINEAR QUADRATIC GAUSSIAN CONTROL Consider the sys
tem in (12.5)with deg A(z) = deg C(z) = n. Assume that all the zeros of polyno
mial C(z) are inside the unit disc, that there are no factors common to all three
of the polynomials A(z), B(z), and C(z), and that a possible common factor of
A(z) and B(z) has all its zeros inside the unit disc. Let the monic polynomial
P(z), which has all its zeros inside the unit disc, be the solution to (12.45)
with deg P(z) = n. The admissible control law with no delay that minimizes the
criterion of (12.8) is given by

u(k) = − S∗(q−1)
R∗(q−1) y(k) = − S(q)

R(q) y(k) (12.55)

where polynomials R∗(z) and S∗(z) are the unique solution to Equation (12.49)
with deg X (z) < n. With the control law of (12.55), the output becomes

y(k) = R(q)
P(q) e(k) (12.56)

and the control signal is

u(k) = − S(q)
P(q) e(k) (12.57)

The minimal value of the loss function is

minE(y2 + ρu2) = σ 2

2π i

∮
R(z)R(z−1) + ρS(z)S(z−1)

P(z)P(z−1)
dz

z
(12.58)

Proof. Introduce

u = v − S

R
y (12.59)

where v may be regarded as a transformed control variable, which has to be
determined. Equations (12.5), (12.47), and (12.59) give

y = B Rv + CRe

AR + B S
= B Rv + CRe

PC
= B R

PC
v + R

P
e (12.60)

It then follows from (12.60) that

u = v − SBv + SCe

PC
= PC − B S

PC
v − S

P
e = AR

PC
v − S

P
e (12.61)

The loss function of (12.8) can be written as

J = E(y2 + ρu2) = E
(

B R

PC
v + R

P
e

)2

+ ρE
(

AR

PC
v − S

P
e

)2

= J1 + 2J2 + J3
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where

J1 = E
(( B R

PC
v
)2

+ ρ
( AR

PC
v
)2

)

J2 = E
(( B R

PC
v
)(R

P
e
)

− ρ
( AR

PC
v
)( S

P
e
))

J3 = E
((R

P
e
)2

+ ρ
( S

P
e
)2

)

It follows from Remark 2 of Theorem 10.2 and (12.45) that

J1 = 1
2π i

∮ (
B(z)B(z−1) + ρA(z)A(z−1)

)
R(z)R(z−1)

P(z)P(z−1)C(z)C(z−1) V (z)V (z−1) dz

z

= r

2π i

∮
R(z)R(z−1)
C(z)C(z−1) V (z)V (z−1) dz

z
= rE

(
R(q)
C(q) v

)2

For causal controllers with no time delay v(t) can be expressed as v(t) =
V (q)e(t), where V (q) is a rational function with zero pole excess.

J2 = σ 2

2π i

∮
B(z)R(z)R(z−1) − ρA(z)R(z)S(z−1)

P(z)C(z)P(z−1) V (z) dz

z

It follows from Equation (12.54) that

B(z)R(z−1) − ρA(z)S(z−1) = P(z−1)X (z)

Hence

J2 = σ 2

2π i

∮
R(z)X (z)
P(z)C(z) V (z) dz

z
= E

(( R(q)X (q)
P(q)C(q) v(k)

)

e(k)
)

It was assumed that P(z) and C(z) are stable and it follows from Lemma 12.2
that deg X (z) < n. This implies that

deg R(z)X (z) < deg P(z)C(z) = 2n

The quantity
R(q)X (q)
P(q)C(q) v(k)

is thus a function of v(k−1), v(k−2), . . . . Because all these terms are independent
of e(k), J2 becomes zero. The loss function can thus be written as

J = rE
(

R(q)
C(q) v(k)

)2

+ E
(

R(q)
P(q) e(k)

)2

+ ρE
(

S(q)
P(q) e(k)

)2

where P and C are stable polynomials. It follows that the loss function achieves
its minimum (12.58) for v = 0, which by (12.59) corresponds to the control law
of (12.55). Equations (12.56) and (12.57) follow from (12.60) and (12.61), and
Theorem 10.2 and (10.23) give the formula of (12.58).
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Remark 1. The minimumvariance control law is a special case of Theo
rem 12.4 with ρ = 0. It follows from (12.49) that R∗(z)P(z) = −zdB∗(z)X (z).Be
cause deg X (z) < n, we have deg R∗(z) < n for ρ = 0. Because also deg S∗(z) < n

the polynomials R(z) and S(z) have z as a common factor. Introducing B(z) =
B+(z)B−(z), where B+ has all its zeros inside the unit disc and B− all its zeros
outside the unit disc, we get

√
r P(z) = zdB+(z)B−∗(z)

where
√

r = B−(0). The Diophantine equation (12.47) then becomes

A(z)R(z) + B(z)S(z) = zdB+(z)B−∗(z)C(z)/
√

r

Cancelling the common factor z in R(z) and S(z) to give R(z) and S(z) we get

A(z)R̃(z) + B(z)S̃(z) = zd−1B+(z)B−∗(z)C(z)/
√

r

which is identical to (12.32). Theorem 12.3 has thus been proven in a different
way. The polezero cancellation at the origin of the control law explains that
there are d−1 instead of d closedloop poles at the origin. Compare with (12.29).

Remark 2. If the polynomial A(z) has the form A(z) = zlA1(z), where
l ≤ d = deg A(z)−deg B(z), it follows from (12.45) that P(z) = zlP1(z). Equation
(12.47) then implies that S(z) = zlS1(z).

The LQG controller will now be illustrated by an example.

Example 12.10 LQG control with unstable process zero

Consider the same system as in Examples 12.8 and 12.9. Instead of using a
minimumvariance control law we will now use an LQG strategy. To do this the
parameter ρ in the control strategy must be chosen. To guide this choice we will
first calculate the variances of the output and control signals obtained for different
values of the loss function. The results are shown in Fig. 12.8. The value ρ = 0
corresponds to a minimumvariance strategy. This gives a control signal with large
variance. Compare with Example 12.9. The variance of the control signal decreases
rapidly with increasing ρ . The variance of the output increases slowly.

By choosing a reasonable value of ρ it is possible to have a control strategy
that gives an output variance that is only marginally higher than with minimum
variance control and a variance of the control signal that is substantially lower. A
reasonable value is ρ = 1. This gives Ey2 = 1.39 and Eu2 = 0.22, which can be
compared with minimumvariance control that gives Ey2 = 1.05 and Eu2 = 14.47.

The input and output signals obtained with ρ = 1 are shown in Fig. 12.9.
Compare with the corresponding curves for minimumvariance control in Exam
ple 12.9. The fluctuations in the output are a little larger, but the fluctuations
in the control signal are substantially smaller. This way of applying LQG control
where the control weighting is used as a design parameter is very typical.
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Figure 12.8 Variances of input u (dashed line) and output y (solid line)
for LQG controllers having different values of the control weighting ρ for the
system in Example 12.10

.

An Interpretation

Theorem 12.4 establishes the relation between LQGcontrol and poleplacement
control because the polynomial C(z) is the observer polynomial Ao(z) and P(z)
is the polynomial Ac(z). The LQGcontroller may thus be considered as a pole
placement controller where the observer polynomial Ao(z) is obtained from the
noise characteristics and the polynomial Ac(z) from the solution to an optimiza
tion problem. The solution to the optimization problem also tells what solution
of the Diophantine equation we should choose.
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Figure 12.9 Simulation of the for the system in Example 12.10 using the
LQGcontroller with ρ = 1. The output obtained with the minimumvariance
controller (ρ = 0) is shown in dashed. Also compare with Fig. 12.6.
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A Computational Procedure

Theorem 12.4 gives a convenient way to compute the LQGcontrol law for SISO
systems, which can be described as follows.

1. Rewrite the model of the process and the disturbance in the standard
form (12.5), where C(z) is a stable polynomial. It may be necessary to use
a spectral factorization to obtain this form.

2. Use a spectral factorization to calculate P(z). If the polynomials A(z) and
B(z) have a stable common factor A2(z), the calculations of the control law
can be simplified by first factoring A(z) and B(z) as A(z) = A1(z)A2(z) and
B(z) = B1(z)A2(z). It follows from (12.45) that A2(z) also divides P(z).
This polynomial can thus be written as P(z) = P1(z)A2(z), where P1(z) is
given by

rP1(z)P1(z−1) = ρA1(z)A1(z−1) + B1(z)B1(z−1)

The polynomial P(z) is then equal to P1(z)A2(z), which is stable, because
A2(z) was assumed stable. Equation (12.47) can also be divided by A2(z)
to give

P1(z)C(z) = A1(z)R(z) + B1(z)S(z)
where deg R(z) = deg S(z) = deg C(z) = n, and S(0) = 0.

3a. If there are no common factors between A and B and if A(0) �= 0 then
the controller is given by a unique solution to the Diophantine equation
(12.47) such that deg R(z) = deg S(z) = n, and S(0) = 0.

3b. If there are stable common factors of A and B or if A(0) = 0 the solution is
obtained from the Equation (12.49) or Diophantine equation (12.47), and
(12.54).
The computational procedure shows that when there are no common fac

tors between A and B and when A(0) �= 0 then it is sufficient to solve only one
Diophantine equation with the extra constraint S(0) = 0 to obtain a unique
solution. In other cases it is necessary to solve the coupled equations (12.49).
Theorem 12.4 is illustrated by two examples.

Example 12.11 LQG for first order system

Consider a system characterized by

A(z) = z + a a �= 0
B(z) = b

C(z) = z + c

To find the control law that minimizes the criterion of (12.8), the spectralfactori
zation problem is first solved. Equation (12.45) can be written as

r(z + p1)(z−1 + p1) = ρ(z + a)(z−1 + a) + b2
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Equating coefficients of equal powers of z gives

rp1 = ρa

r(1 + p21) = ρ(1+ a2) + b2

Elimination of p1 gives

r2 − r
(

ρ(1+ a2) + b2
)

+ ρ2a2 = 0 (12.62)

This equation has the solution

r = 1
2

(

ρ(1+ a2) + b2 +
√

ρ2(1− a2)2 + 2ρb2(1+ a2) + b4
)

where the positive root is chosen to give hp1h < 1. Furthermore

p1 = ρa

r

Because A and B are relative prime and A(0) �= 0, the solution can be found
from the Diophantine equation (12.47). With deg S = 1 and S(0) = 0, Eq. (12.47)
becomes

(z + a)(z + r1) + bs0z = (z + p1)(z + c)
Putting z = −a we get

s0 = −(p1 − a)(c − a)
ab

It follows from (12.62) that

ρap21− ρ p1(1 + a2) − p1b
2 + ρa = 0

Hence
ρ(ap21− a2p1− p1 + a) = p1b

2

or
ρ
(

ap1(p1− a) − (p1− a)
)

= p1b
2

which gives

p1− a = − p1b
2

ρ(1− ap1)
We thus get

s0 = p1b
2(c − a)

ρab(1− ap1)
= b(c − a)

r(1 − ap1)
Furthermore, equating the constant terms in (12.47) gives

r1 = p1c

a
= ρc

r

The control law thus becomes

u(k) = − S(q)
R(q) y(k) = − b(c − a)

r(1 − ap1)
q

q + p1c/a
y(k)

The calculations in Example 12.11 do not work when a = 0, because in this case
the solution to the LQGproblem is not uniquely determined by the Diophantine
equation (12.47) and it is necessary to use (12.49).
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Example 12.12 LQG for system with a timedelay

Consider the case
A(z) = z

B(z) = b

C(z) = z + c

The spectral factorization problem (12.45) has the solution

P(z) = z r = ρ + b2

Assuming that it is desired to have a controller with no extra delay we require that
deg S(z) = deg R(z) = 1. The Diophantine equation (12.47) with the constraint
deg S∗(z) = 0 becomes

z(z+ r1) + bs0z = z(z+ c)
Identification of coefficients of equal power of z gives only one equation

r1 + bs0 = c

to determine two parameters r1 and s0. The approach with the Diophantine equa
tion thus does not work in this case. Equation (12.49) gives

x0 + rs0 z = b(1+ cz)
bx0z − rz(1+ r1 z) = −ρ z(1+ cz)

Identification of coefficients of equal power of z gives linear equations which have
the solution

x0 = b

r1 = ρc

r
= ρc

ρ + b2

s0 = bc

r

Uncontrollable and Unstable Modes

Models with the property that polynomials A(z) and B(z) have a common fac
tor that is not a factor of C(z) are important in practice. They appear when
there are modes that are excited by disturbances and uncontrollable from the
input. Compare Sec. 12.2. Because the modes are not controllable, they are not
influenced by feedback.

Theorem 12.4 covers the case of stable common factors, but it does not
work for unstable common factors. Unstable common factors are important in
practice because they give one way of obtaining regulators with integral action.

To see what happens when there are unstable common factors, let A2

denote the greatest common divisor of A and B and let A−
2 denote the factor of

A2 with zeros outside the unit disc or on the unit circle. Let the feedback be

u(k) = − S(q)
R(q) y(k)
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where R(z) and S(z) are relatively prime. It follows from (12.5) that

y(k) = R(q)C(q)
A(q)R(q) + B(q)S(q) e(k) (12.63)

u(k) = − S(q)C(q)
A(q)R(q) + B(q)S(q) e(k) (12.64)

The unstable factor A−
2 (z) divides the denominators of the righthand sides of

(12.63) and (12.64). Both y and u will be unbounded unless R(z) or S(z) are
chosen in special ways. The signal y will be bounded if R(z) is divisible by
A−

2 (z), and u will be bounded if A−
2 (z) divides S(z). Because R(z) and S(z)

are relatively prime, it is not possible to make both y and u bounded. This is
natural because infinitely large control actions are necessary to compensate for
infinitely large disturbances.

To describe a problem of this type as a meaningful optimization problem,
the criterion of (12.8) must be modified. One possibility is to introduce the
variable

w(k) = q−m A−
2 (q)u(k) (12.65)

where m = deg A−
2 (z), and to introduce the criterion

J ′
lq = E

(
y2(k) + ρw2(k)

)
(12.66)

Example 12.13 Integral action

Let the system be described by

y(k) = B1(q)
A1(q) u(k) + C1(q)

q − 1 e(k)

which is a special case of Eqs. (12.1) to (12.4) with a drifting disturbance. Hence

A(q) = (q − 1)A1(q)
B(q) = (q − 1)B1(q)
C(q) = A1(q)C1(q)

Unbounded control signals are necessary to compensate for the unbounded distur
bance. This implies that the modified loss function (12.66) becomes

J′
lq = E

[

y2(k) + ρ
(

∆u(k)
)2

]

where
∆u(k) = u(k) − u(k − 1)

This means that the difference and not the absolute value of the control signal is
penalized. The solution to the LQGproblem gives a controller with integral action.

The following result can then be established.
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THEOREM 12.5 LQGCONTROL WITH UNSTABLE COMMON FACTORS Con
sider the system described by (12.5), where A(z) and C(z) are monic polynomials
of degree n. Assume that all zeros of C(z) are inside the unit disc and that there
is no nontrivial polynomial that divides A(z), B(z), and C(z). Let A2(z) be the
greatest common divisor of A(z) and B(z), let A+

2 (z) of degree l be the factor
of A2(z) with all its zeros inside the unit disc, and let A−

2 (z) of degree m be
the factor of A(z) that has zeros on the unit circle or outside the unit disc. The
admissible control law that minimizes (12.66) is given by

u(k) = − S(q)
R(q) y(k)

where R(z) and S(z) are of degree n + m

R(z) = A−
2 (z)R̃(z)

S(z) = zmS̃(z)
(12.67)

and R̃(z) and S̃(z) satisfies

A1(z)A−
2 (z)R̃(z) + zmB1(z)S̃(z) = P1(z)C(z)
A∗(z)X (z)+ rP(z)S̃∗(z) = qm B̃(z)C∗(z)

(12.68)

with deg R̃(z) = deg S̃(z) = n, deg X (z) < n and S̃(0) = 0. Furthermore

A(z) = A1(z)A2(z)
B(z) = B1(z)A2(z)
B̃(z) = B1(z)A+

2 (z)

and P1(z) is the solution of the spectralfactorization problem

rP1(z)P1(z−1) = ρA1(z)A−
2 (z)A1(z−1)A−

2 (z−1) + B1(z)B1(z−1) (12.69)

with deg P1(z) = deg A1(z) + deg A−
2 (z).

Proof. Introducing the signal (12.65), the model (12.5) can be written as

A(q)y(k) = B̃(q)qmw(k) + C(q)e(k)

The polynomials A(q) and B̃(q) have the common factor A+
2 (z), which has all

its zeros inside the unit disc, but no other common factors with zeros outside
the unit disc or on the unit circle. It then follows from Theorem 12.4 that the
optimal control law

w(k) = − S̃(q)
R̃(q)

y(k)
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is obtained from (12.47). Because A(z) and B̃(z) have the stable common factor
A+

2 (z), the polynomial P(z) has the form

P(z) = A+
2 (z)P1(z)

where P1(z) is the solution to the spectralfactorization problem (12.69). From
Lemma 12.2 the polynomials R̃(z) and S̃(z) satisfy the equations

A(z)R̃(z) + zmB̃(z)S̃(z) = A+
2 (z)P1(z)C(z)

A∗(z)X (z)+ rP(z)S̃∗(z) = qm B̃(z)C∗(z)

with deg R̃(z) = deg S̃(z) = n. Because A+
2 divides A(z) and B̃(z)we get (12.68).

Using (12.65) to express the control law in terms of the control variable u gives
the result.

Remark. Notice that using (12.67), Eq. (12.68) can be written as

A(z)R(z) + B(z)S(z) = A2(z)P1(z)C(z)

The LQGsolution can thus be interpreted as a poleplacement controller, where
the poles are positioned at the zeros of A2, P1, and C. The controller also has the
property that A−

2 divides R. This is an example of the internal model principle.

Command Signals

The discussion in this chapter has so far been limited to the regulator prob
lem. To introduce command signals, refer to the discussion in Chapter 5. The
key issue is to introduce the command signals in such a way that they do not
generate unnecessary reconstruction errors. This is achieved by the control law

R(q)u(k) = t0 Ao(q)uc(k) − S(q)y(k)

where Ao(q) is the observer polynomial and to a constant. For the optimal
Kalman filter Ao(q) = C(q), where C(q) is given by (12.40). It then follows
from (12.5) that the output of the system is given by

y(k) = t0

B(q)
P(q) uc(k) + R(q)

P(q) e(k)

where deg R = n.
The pulsetransfer function from the command signal is B(z)/P(z). This

response may be shaped further by cascading with a precompensator that has
an arbitrary stable transfer function H f (z). The control law becomes

u(k) = Ao(q)
R(q) H f (q)uc(k) − S(q)

P(q) y(k)
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which gives

y(k) = B(q)
P(q) H f (q)uc(k) + R(q)

P(q) e(k)

Because the polynomial P is stable, this may be canceled by the precompensator.
It thus follows that the response for disturbances and command signals may be
shaped differently.

The feedback S/R is first designed to ensure a good response to distur
bances. The precompensator H f is then chosen to obtain the desired response
to command signals.

12.6 Practical Aspects

Much of the arbitrariness of design seems to disappear when design problems
are formulated as optimization problems. The model and the criteria are stated,
and the control law is obtained simply as the solution to an optimization prob
lem. This simplicity is deceptive because the arbitrariness is instead transferred
to the modeling and the formulation of criteria. A successful application of op
timization theory requires insight into how the properties of the model and the
criteria are reflected in the control law. Typical questions are: What should the
model look like in order to get a regulator with integral action? What problem
statements give regulators with a PIDstructure? Some of these issues are dis
cussed in this section, which also gives insight into the properties of the optimal
control laws. It turns out that some results can be formulated as design rules.
The polynomial approach, which operates directly with the transfer functions,
is well suited to do this.

Other aspects of practical relevance, such as sensitivity and robustness, are
also discussed. A brief treatment of the intersample ripple of the loss function
is given, together with some aspects of the choice of the sampling period.

Properties of the Optimal Regulator

Some properties of the model influence the optimalcontrol laws. The basicmodel
used is given by (12.5)—that is,

A(q)y(k) = B(q)u(k) + C(q)e(k) (12.70)

The ratio B/A represents the pulsetransfer function of the process, and the ra
tio C/A represents the pulsetransfer function that generates the disturbance of
the process output. The polynomials A, B , and C may have common factors that
reflect the way the control signal and the disturbance are coupled to the system.
There are, however, no factors common to all three polynomials. Compare this
with the discussion in Sec. 12.2, where the model is derived. The presence of
common factors that will directly influence the properties of the regulators will
now be investigated.
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The internal-model principle. Factors that are common to polynomials
A and B correspond to disturbance modes that are not controllable from u. Such
modes will appear as factors of P. Let

A2 = gcd(A, B)

be the greatest common divisor of polynomials A and B . If A2 is stable, it
follows from Theorem 12.4 that A2 also divides P. If A2 has a factor A−

2 with all
its zeros outside the unit disc, the corresponding result follows from Theorem
12.5. In this case it also follows from Theorem 12.5 that A2 divides R. This
observation is called the internalmodel principle; it says that to regulate a
system with unstable disturbances, the disturbance dynamics must also appear
in the dynamics of the regulator. A few examples illustrate this idea.

Example 12.14 Integral action

A regulator has integral action if z−1 divides R(z). It follows from Theorem 12.5,
and the internalmodel principle, that this will occur if z − 1 divides both A and
B , which means that the model is of the form

A1(q)(q − 1)y(k) = B1(q)(q − 1)u(k) + C(q)e(k)

This means that there is a drifting disturbance.

Example 12.15 Elimination of a sinusoidal disturbance

A narrowband sinusoidal disturbance with frequency centered at ω may be rep
resented as white noise driving a system with the denominator

D(q) = q2 − 2q cosω h + 1

If the poles of the system dynamics do not correspond to D, the model becomes

A1(q)D(q)y(k) = B1(q)D(q)u(k) + C(q)e(k)

The optimal regulator is then such that D(z) divides R(z).

Cancellation of process poles. A common factor of A and C corresponds
to controllable modes that are not excited by the disturbances. Let A2 be the
greatest common divisor of A and C. The polynomial A2 is stable because C is
stable, and it does not divide B because there is no factor that divides all of A,
B , and C. It follows from (12.47) that A2 also divides the polynomial S, which
is the numerator of the regulator transfer function. Thus stable process poles

that are not excited by the disturbances may be canceled.
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Cancellation of process zeros. Common factors of B and C correspond
to process zeros that block transmission both for the control signal u and for
the disturbance e. Let B2 be the greatest common divisor of B and C. The
polynomial B2 is stable and it does not divide A. It then follows from (12.47)
that B2 divides R. This means that the zeros corresponding to B2 = 0 are
canceled by the regulator. Therefore, process zeros that are also transmission

zeros for the disturbance C are canceled by the regulator.
For the minimumvariance control, it follows from (12.46) with ρ = 0 that

√
rP = qd B+B−∗

where
√

r = B−(0) and from (12.47) that B+ divides R. All stable zeros are
thus canceled by the minimumvariance control law.

An analysis of the properties of the optimalcontrol law thus gives partial
answers to the classic cancellation problem.

Sensitivity and Robustness

It is important that a control system be insensitive or robust with respect to
measurement errors, plant disturbances, and modeling errors. This may be an
alyzed as in Sec. 5.5 for the poleplacement problem. The robustness properties
are conveniently expressed in terms of the loop gain:

L = B S

AR

or the return difference

Hrd = 1
S

= 1+ B S

AR
= AR + B S

AR
= PC

AR

The loop gain L(exp iω h) is normally high for low frequencies and small for
high frequencies. The crossover frequency ω c is the lowest frequency, where

∣
∣
∣L

(

eiω ch
)∣
∣
∣ = 1

The closedloop system is insensitive to plant disturbances at those frequencies
where the loop gain is high. To have low sensitivity to poor modeling of the
highfrequency dynamics of the plant, it is desirable that the loop gain decreases
rapidly above the crossover frequency. It is possible to make sure that the loop
gain is high for certain frequencies by choosing models with special structure,
as was done in Examples 12.14 and 12.15. Plots similar to those in Fig. 5.6
are also useful in evaluating the sensitivity. In a properly designed sampledata
system, there will be antialiasing filters, which eliminate signal transmission
above the Nyquist frequency. The selection of a proper sampling rate is one way
to make sure that the loop gain is low over a given frequency. This also means
that highfrequency modeling errors have little influence. Notice, however, that
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plots of the loop gain and the return difference will not give the complete picture
because there may be polezero cancellations that do not show up in these plots.

An analysis of the characteristic equations is useful in such a case. To
perform such an analysis, assume that the system is governed by

A0(q)y(k) = B0(q)u(k) + C0(q)e(k) (12.71)

but that a regulator is designed based on a different model, as in (12.70). The
regulators given by Theorems 12.4 and 12.5 give a closedloop system with the
characteristic polynomial

A0 R + B0S = A0R − AR + B0S − B S + AR + B S

= PC + (A0 − A)R + (B0 − B)S

When the model of (12.70) is equal to the system of (12.71) the characteristic
polynomial is PC = P1 A2 C, as expected. By continuity it also follows that small
changes in the system give small changes in the closedloop poles. The system
is sensitive to changes in the parameters if polynomial P1 or C have zeros close
to the unit circle.

To guarantee systems with a low sensitivity, it is necessary to impose
further constraints. Recall that both C and P were obtained as solutions to a
spectralfactorization problem.

Closed-Loop Systems with Guaranteed Exponential Stability

The control laws given by Theorems 12.2, 12.3, 12.4, and 12.5 give closedloop
systems with poles inside the unit disc. It is sometimes desirable to have control
laws such that the closedloop system has its poles inside a circle with radius r̄.
It is straightforward to formulate optimization problems that give such control
laws.

Introduce the criterion

J = Er̄−2k
(

y2(k) + ρu2(k)
)

(12.72)

If a control law that minimizes this criterion can be found, the variables y(k)
and u(k) must converge to zero at least as fast as r̄k when k increases. To
obtain such a result, it must be assumed that the model of (12.5) is such that
the covariance of e(k) also goes to zero as r̄k.

Introduce the scaled variables η, µ, and ε defined by

y(k) = r̄kη(k)
u(k) = r̄kµ(k)
e(k) = r̄kε(k)

Because
ql y(k) = ql

(

r̄kη(k)
)

= r̄k+lη(k + l) = r̄k(r̄q)lη(k)
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it follows that
A(q)y(k) = A(q)

(

r̄kη(k)
)

= r̄k A(r̄q)η(k)

Introducing the transformed polynomials

Ã(z) = A(r̄z)
B̃(z) = B(r̄z)
C̃(z) = C(r̄z)

the model of (12.5) can be written as

Ã(q)η(k) = B̃(q)η(k) + C̃(q)ε(k) (12.73)

and the criterion of (12.72) becomes

J = E
(
η2(k) + ρµ2(k)

)
(12.74)

The control law that minimizes (12.74) for the system of (12.73) is then given
by Theorem 12.4. This control law gives a closedloop system in which all the
zeros of the characteristic equation

P̃(z)C̃(z) = 0

are inside the unit disc. Going back to the original variables results in the
characteristic equation

P(z)C(z) = P̃
( z

r̄

)

C̃
( z

r̄

)

= 0

All the zeros of this equation are inside the circle hzh = r̄.
A simple procedure for obtaining feedback laws that give closedloop sys

tems with all poles inside the circle hzh = r̄ has thus been devised.

Disturbance Reduction

The return difference is

Hrd = 1+ L = 1+ B S

AR
= AR + B S

AR

The inverse of the return difference is a measure of how effectively the closed
loop system eliminates disturbances.

Consider the model of (12.70). Without control the output is

yol = C

A
e
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With the LQGcontrol law, the output becomes

ylqn = R

P
e

Elimination of e between these equations gives

ylqn = AR

PC
yol = 1

PC

AR

yol = 1

1+ B S

AR

yol = 1
Hrd

yol = S yol

The sensitivity function thus tells how much disturbances of different frequen
cies are attenuated.

Selection of the Sampling Period

There is a substantial difference between the minimumvariance control law
discussed in Sec. 12.4 and the LQGcontrol law discussed in Sec. 12.5 in terms of
the influence of the sampling period. The choice of sampling period is critical for
the minimumvariance control. A short sampling period gives a highbandwidth
system, which settles quickly. The control actions will also be large when the
sampling period is short. In this respect, the minimumvariance control law is
similar to the deadbeat control law discussed in Sec. 4.3. The sampling period
is less critical for LQGcontrol. It follows from the analysis of Sec. 11.5 that the
control law approaches continuoustime control as the sampling period h goes to
zero. The following discussion therefore concentrates on the minimumvariance
control law.

Intersample Variation of the Output Variance

The minimumvariance control law minimizes the variance of the output at

the sampling instants. However, the main objective may be to minimize the
continuoustime loss function of (12.7). This may be achieved by first sampling
the continuoustime loss function and to minimize the corresponding discrete
time loss function as was discussed in Section 11.1. This results in a complicated
design procedure. The minimumvariance control laws are in many cases a suffi
ciently good approximation. It is useful to investigate the intersample variation
of the loss function. This analysis is similar to the analysis of intersample ripple
for deterministic systems of Sec. 3.5. An example is used to illustrate the idea.

Example 12.16 Intersample variation of the loss function

Consider the continuoustime system

dx = u dt + dv (12.75)

where v(t) is a Wiener process with incremental covariance σ 2v dt. Assume that the
output is observed without antialiasing filters at times tk = k ⋅ h, where h is the
sampling period. Hence,

y(tk) = x(k) + ε (tk)
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where ε (tk) is a sequence of independent random variables with zero mean and
covariance σ 2ε . Sampling of the system gives

x(kh + h) = x(kh) + hu(kh) + v(kh + h) − v(kh)

y(kh) = x(kh) + ε (kh)

Hence,

y(kh + h) = y(kh) + hu(kh) + ε (kh + h) − ε (kh) + v(kh + h) − v(kh)

The disturbance on the righthand side may be represented as

w(kh + h) = e(kh + h) + ce(kh)

where e(kh) is a sequence of independent zeromean random variables with stan
dard deviation σ .

Simple calculations give

c = −1 − hσ 2v
2σ 2ε

+
√

hσ 2v
σ 2ε

+ h2σ 4v
4σ 4ε

ă

σ 2 = −σ 2ε
c

The minimumvariance control law for the system is

u(kh) = −1+ c

h
y(kh)

The standard deviation of the output under minimumvariance control is

Ey2(t) = σ 2 t = h, 2h, . . .

The standard deviation of the state variable x is

Ex2(t) = σ 2 − σ 2ε t = h,2h, . . .

Equation (12.75) is integrated to determine the variance of the state variable
between the sampling instants. This gives

x(kh + s) = x(kh) + su(kh) + v(kh + s) − v(kh)

= (1− α s)x(kh) − α sε (kh) + v(kh + s) − v(kh)

where
α = (1 + c)/h

We now introduce
Px(s) = Ex2(kh + s)

It then follows that the output variance is

Py(s) = Px(s) + σ 2ε = (1 − α s)2(σ 2 − σ 2ε ) + (α s)2σ 2ε + sσ 2v + σ 2ε
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Figure 12.10 Variations of the output variance Py in Example 12.16 with
time for regulators having the sampling periods h = 0.2 (solid), h = 0.5
(dashed), h = 1 (dasheddotted), and h = 2 (dotted).

The function Py(s) is shown in Fig. 12.10 when σ ε = σ v = 1. Notice that

max
s

(
Py(0) − Py(s)

)
= h2σ 2v /2

The variation in Py over a sampling interval thus decreases with decreasing h.

The analysis is similar in the general case. The only difference is that Theorem
10.5 must be used to compute the state covariance. In the example the variance
is largest at the sampling instants. This is not always the case. Also notice that
the correct way of dealing with intersample ripple is to sample the continuous
time system and the continuoustime loss functions, as was discussed in Sec
tion 11.1.

Computational Aspects

The LQcontrol law can be determined by a combination of spectral factorization
and solution of linear Diophantine equations. Recall, however, the fundamental
difficulty that arises from poor numerical conditioning of polynomial equations
(see Sec. 9.6).
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12.7 Conclusions

In this chapter optimalcontrol problems are solved for systems described by
inputoutput models. The results given are limited to singleinput–singleoutput
systems. A canonical model for the system, Eq. (12.5), is derived first. This
model is characterized by three polynomials, A, B , and C. The underlying
continuoustime model may be described as a combination of a time delay and
a system with rational transfer functions. The disturbances are characterized
as filtered white noise. There are many physical systems that can be described
by such models.

Optimalcontrol problems characterized by quadratic loss functions are
solved for the system. A special case where the loss function simply is the
variance of the output is considered first. The general problem, in which there
is also a penalty on the control variable, is then treated. Both these problems
are closely related to the prediction problem for a random process with rational
spectral density. This problem is also solved. Practical aspects, such as selection
of the sampling period, are also discussed.

The solutions to the optimalcontrol problems give design tools. The solu
tions also give insight into the character of the optimal solutions. In particular,
they tell that the optimal regulator always cancels stable process zeros that
are also zeros for the process disturbances. Stable process poles are canceled
only if they are not excited by disturbances. The results also give insight into
the relationships between the different design methods. For instance, the LQG
solutions can be interpreted as poleplacement regulators, where the process
poles and the observer poles are chosen in special ways.

Calculation of the optimal solution is expressed in terms of two polynomial
operations, spectral factorization and solution of Diophantine equations.

12.8 Problems

12.1 Consider the process

y(k) = 2 q2 − 1.4q + 0.5
q2 − 1.2q + 0.4 e(k)

where e(k) is white noise with zero mean and unit variance. Determine the optimal
mstepahead predictor and the variance of the prediction error when m = 1, 2,
and 3.

12.2 Determine the mstepahead predictor for the process

y(k) + ay(k − 1) = e(k) + ce(k − 1)

Determine also the variance of the prediction error as a function of m.

12.3 A stochastic process is described by

y(k) − 0.9y(k − 1) = e(k) + 5e(k − 1)
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(a) Determine an equivalent description such that the zero of a corresponding
polynomial C is inside the unit circle. How large is the variance of y?

(b) Determine the twostepahead predictor for the process and the variance of
the prediction error.

12.4 Assume that the demand for a product in an inventory, z(k), can be described as

z(k) = 300 + 10k + y(k)

where the time unit is months, and y(k) is described by the process

y(k) − 0.7y(k − 1) − 0.1y(k − 2) = 5e(k)

where e(k) is white noise with zero mean and unit variance. Make a prediction
and determine the expected standard deviation of the prediction error for August
through November when the following data are available:

Month k z(k)
January 1 320

February 2 320

March 3 325

April 4 330

May 5 350

June 6 370

July 7 375

12.5 Consider the process

y(k) − y(k − 1) + 0.5y(k − 2) = u(k − 2) + 0.5u(k − 3)

+ 0.5
(

e(k) + 0.8e(k − 1) + 0.25e(k − 2)
)

where e is zero mean white noise with unit standard deviation. Determine the
minimumvariance controller and the minimum achievable variance.

12.6 Determine the minimumvariance controller for the system

y(k) − 0.5y(k − 1) = u(k − 2) + e(k) − 0.7e(k − 1)

where e(k) is white noise with mean 2 and unit variance.
12.7 Consider the process

y(k) + ay(k − 1) = u(k − 2) + e(k) + ce(k − 1)

(a) Determine the minimumvariance controller.
(b) Discuss the special case a = 0.

12.8 Given the system

y(k) − 1.7y(k − 1) + 0.7y(k − 2) = u(k − d) + 0.5u(k − d − 1)
+ e(k) + 1.5e(k − 1) + 0.9e(k − 2)
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Figure 12.11

(a) Determine the minimumvariance controller and the variance of the output
for d = 1 and 2.

(b) Simulate the openloop system and the system controlled with the minimum
variance controller. Compare the output and the control signal for the dif
ferent cases.

12.9 Consider the process in Fig. 12.11. The disturbance z has the spectral density

φ z(ω) = 1
2π ⋅

1
1.36 + 1.2 cosω

(a) Determine a pulsetransfer function H(z) that gives an output with spectral
density φ when driven by zeromean white noise with unit variance.

(b) What is the steadystate variance of y when

u(k) = −K y(k)

for K = 1?
(c) What is the minimum achievable variance for a proportional controller and
how large is the corresponding value of K?

(d) How large is the variance of y when a minimumvariance controller is used?

12.10 Given the system

y(k) − 0.25y(k − 1) + 0.5y(k − 2) = u(k − 1) + e(k) + 0.5e(k − 1)

where e(k) is white noise with unit variance. Assume that the process is controlled
with the proportional controller

u(k) = −K y(k)

(a) Show that the variance of the output is

2.125 − K

0.5(1.75 − K)(1.25 + K)

and that the lowest variance is obtained for K = 1, which gives the variance
4/3.

(b) The expression above is zero for K = 2.125. Explain the paradox.
(c) Compute the minimumvariance controller and the resulting output vari
ance.
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12.11 Given the process

y(k) − 1.5y(k − 1) + 0.7y(k − 2) = u(k − 2) − 0.5u(k − 3) + v(k)

(a) Assume that v(k) = 0 and compute the deadbeat controller for the system.
(b) Assume that

v(k) = e(k) − 0.2e(k − 1)
where e(k) is white noise. Compute the minimumvariance control law.

(c) What is the steadystate variance of y when the deadbeat and the minimum
variance controllers are used on the system when v is as in b)?

(d) Simulate the system using the different controllers. Study the output and
the accumulated loss, that is, the sum of the square of the output.

12.12 Consider the dynamic system

y(k) = B(q)
A(q) u(k) + λ

C(q)
D(q) e(k)

where e(k) is white noise and B is stable. The polynomials A, C, and D are
assumed to be monic. Determine the minimumvariance controller for the system.

12.13 Use the result from Problem 12.12 to determine the minimumvariance controller
for the system

y(k) = bq−1

1 + aq−1 u(k) + (1+ cq−1)e(k)

12.14 Consider the process in Problem 12.13. Assume that the sampling period is dou
bled; that is, the control signal can be changed only at every second time unit.
Determine the minimumvariance controller and compare with the case when the
control period is one time unit.

12.15 Consider the system in Fig. 12.12, where e is white noise with zero mean and unit
variance. Further,

A(q) = q − 0.7 B(q) = q

C(q) = 1 − 0.5q α = −0.8

(a) Determine a controller that minimizes the variance of y1.

(b) Determine the variances of y1 and y2 when the controller in (a) is used.
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(c) Determine a controller that minimizes the variance of y2 if only y2 is mea
surable, and compute the variances of y1 and y2.

(d) Determine a controller that minimizes the variance of y2 if both y1 and y2
are measurable.

(e) What are the variances of y1 and y2 when the controller in (d) is used?

12.16 Given the process

A(q)y(k) = B(q)u(k) + C(q)e(k) + D(q)v(k)

where v(k) is a known disturbance. Determine the minimumvariance controller
for the process when deg D = deg B .

12.17 Determine the LQGcontroller given by Theorem 12.4 for the process

(1− 0.9q−1)y(k) = u(k − 1) + (1− 0.5q−1)e(k)

when ρ = 1. Calculate the variance of the output and the input for different values
of ρ .

12.18 Consider a system with stable inverse. Derive the minimumvariance controller,
where the control signal u(k) is allowed to be a function of y(k − 1), y(k − 2), . . .,
u(k − 1), . . . . Derive the characteristic equation of the closedloop system.

12.19 Show that the pulsetransfer function from e to y for (12.5) and (12.55) is given
by (12.56). Use (12.45) to derive the minimumvariance controller for a system
where

A(q) = q2 − 1.5q + 0.7
B(q) = q + 0.5
C(q) = q2 − q + 0.24

Compare with the controller obtained through the identity in (12.17).
12.20 Determine for which systems a digital PIDcontroller has the same structure as

the optimal minimumvariance controller.

12.21 Consider a system described by

y(k) = 1
q − a

(
bu(k) + ε (k)

)
+ 1

q − 1 w(k)

where ε and w are whitenoise processes with zero mean and standard deviations
σ ε and σ w, respectively.

(a) Reduce the system to standard form and determine the minimumvariance
controller.

(b) Interpret the controller in (a) as a PIcontroller and determine how the gain
and the reset time depend on the ratio σ 2w/σ 2ε .

12.22 Consider the minimumvariance control law of (12.31) for a system with an un
stable inverse. The output of the closedloop system is given by

y(k) = F(q)
qd−1B−∗(q) e(k)
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Show that the function F/B−∗ has the series expansion

F(q)
B−∗(q) = qd−1 + f1q

d−2 + ⋅ ⋅ ⋅ + fd−1 + F2(q)
B−∗(q)

where deg F2(q) < deg B−∗ and

F1(q) = qd−1 + f1q
d−2 + ⋅ ⋅ ⋅ + fd−1

is the quotient of qd−1C(q) and A(q). Give a convenient way of computing F2. Use
the results of the problem to determine the increase of the minimumvariance due
to unstable system zeros.

12.23 Determine the intersample ripple of the loss function when the process

dx1 = x2 dt

dx2 = u dt + dv

y(tk) = x1(tk) + ε (tk)

is controlled by the minimumvariance regulator. The process v(t) is a Wiener
process with incremental covariance σ 2v dt, and ε (tk) is white measurement noise
with zero mean and variance σ 2ε .

12.24 Consider the process in Example 12.16. Determine the control law with sampling
period h that minimizes

lim
T→∞

E
1
T

∫ T

0
x2(s) ds

and compare it with the minimumvariance control.

12.25 Consider a process subject to a disturbance that is characterized as a Wiener
process with incremental covariance dt. Determine the prediction error of the
minimumvariance in each case. Use different prediction horizons and sampling
periods.

(a) The process has an unstable zero z = b > 1.
(b) The process has an unstable pole z = a > 1.

12.26 Consider the system in Problem 12.23 with an extra time delay of 1 s. Determine
the minimumvariance as a function of the sampling period.

12.27 Consider the system in Problem 12.23. Determine the output variance as a func
tion of the input covariance for different sampling periods.

12.28 Consider the system

y(k) = 1
q − 0.999 u(k) + q

q − 0.7 e(k)

Determine the minimumvariance control law for the system. Compare it with
a proportional feedback that gives a corresponding response rate. Discuss the
relative merits of the control laws by calculating their loop gains and return dif
ferences. Explain why the minimumvariance control is inferior. (Hint: A bad
optimization problem gives a bad optimal regulator.)
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12.29 Given the system

y(k) = 1.4y(k − 1) − 0.65y(k − 2) + u(k − 1) − 0.2u(k − 2)
+ e(k) + 0.4e(k − 1)

where e ∈ N(0, 2)
(a) Determine the minimumvariance controller.
(b) Determine the deadbeat controller.
(c) Compute the variance of y when the controllers in (a) and (b), respectively,
are used.

12.30 Consider the system

y(k) + ay(k − 1) = u(k − 1) + e(k) + ce(k − 1)

where e ∈ N(0, 1). We want to determine the minimumvariance controller for the
process but the value of c is unknown.

(a) Assume in the design that c = 0 and determine the minimumvariance con
troller for the system

y(k) + ay(k − 1) = u(k − 1) + e(k)

How large will the output variance be if this controller is used on the true
system?

(b) Assume instead that c = ĉ and redo the calculations in (a).
12.31 Consider the stochastic process

y(k + 2) − 1.1y(k + 1) + 0.3y(k) = e(k + 2) − 1.25e(k + 1)

where e ∈ N(0, 1).

(a) Determine the twostepahead predictor for y(k).
(b) Calculate the variance of the prediction error.

12.32 Given the system
A(q)y(k) = B(q)u(k) + C(q)e(k)

where
A(q) = q3 − 1.7q2 + 0.8q − 0.1
B(q) = 2(q − 0.9)
C(q) = q2(q − 0.1)

and e(k) ∈ N(0, 1).
(a) Determine the minimumvariance controller for the system.
(b) Determine the variance of the output when controlling the system with the
controller in (a).

(c) Redo the calculations in (a) and (b) when

B(q) = 2(0.9q − 1)
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12.33 Consider the process in Example 12.9. Compute the output variance when the
controller does not cancel the zero, that is, when the controller is obtained from
the identity

zC = AR + BS

Compare the variances.

12.34 Consider the process in Example 12.9. Compute the controller that minimizes the
loss function (12.7).

12.35 Show that a system with the inputoutput description

A(q)y(k) = B(q)u(k) + C(q)e(k)

where A(q) = qn + a1q
n−1 + ⋅ ⋅ ⋅ + an

B(q) = b1q
n−1 + ⋅ ⋅ ⋅ + bn

C(q) = qn + c1q
n−1 + ⋅ ⋅ ⋅ + cn

has the following statespace description

x(k + 1) = Φx(k) + Γu(k) + Ke(k + 1)
y(k) = Cx(k)

where the state vector has dimension n + 1 and

Φ =





−a1 1 0 ⋅ ⋅ ⋅ 0

−a2 0 1 ⋅ ⋅ ⋅ 0
...

...
...
. . .

...

−an 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0





Γ =





b1

b2

...

bn

0





K =





1

c1

...

cn−1

cn





C =


1 0 0 ⋅ ⋅ ⋅ 0




12.36 Consider the system in Problem 12.35. Assume that the polynomial C(z) has all
its zeros inside the unit disc. Show that the Kalman filter for the system can be
written as

x̂(k + 1 h k) = Φx̂(k h k) + Γu(k)

x̂(k + 1 h k + 1) = x̂(k + 1 h k) + K
(

y(k + 1) − Cx̂(k + 1 h k)
)

and that the characteristic polynomial of the filter is zC(z).
12.37 Consider the system in Problem 12.35. Assume that minimization of a quadratic

loss function gives the feedback law

u(k) = −Lx̂(k h k)

Show that the controller has the pulsetransfer function

Hc(z) = zL
(

zI − (I − KC)(Φ − ΓL)
)−1

Γ
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Show that the results are the same as those given by

Hc(z) = Lv(Φ − KC)
(

zI − (I − ΓLv)(Φ − KC)
)−1

(I − ΓLv )K + Lv K

= zLv

(

zI − (Φ − KC)(I − ΓLv)
)−1

K

(12.76)

12.38 Consider the system in Problem 12.35. Assume that b1 �= 0. Determine the
minimumvariance strategy using the statespace representations in (12.38) and
in Problem 12.37. Compare the results. (Hint: The minimumvariance control cor
responds to L = [−a1 1 0 ⋅ ⋅ ⋅ 0].)

12.39 Derive the expressions for the transfer function Hc(z) in Eq. (12.76) using the
matrix inversion Lemma B.1 in Appendix B.

12.40 Show that the transfer function Hc(z) in Eq. (12.76) can be written as

Hc(z) = S(z)
R(z) = α + (L − α C)(zI − Φ + ΓL + KC − α ΓC)−1 (K − Γα )

where α = Lv K. Show that this expression is equivalent to

S(z)
R(z) = S0(z) + α A(z)

R0(z) − α B(z)

where S0(z) and R0(z) is the solution to the Diophantine equation

A(z)R(z) + B(z)S(z) = P(z)C(z)

with deg R(z) = n and deg S(z) < n.

12.9 Notes and References

The treatment of the linear quadratic case is in the spirit of Wiener’s work; see
Wiener (1949), Newton, Gould, and Kaiser (1957), and Youla, Bongiorno, and
Jabr (1976).

A thorough discussion of prediction andminimumvariance control is found
in Åström (1970), which is based on Åström (1965, 1967). A similar approach
to the stochasticcontrol problem is found in Box and Jenkins (1970). The theo
rem for minimumvariance control of systems with unstable inverses was first
published in Peterka (1972). An algebraic approach to the multivariable LQ
and minimumvariance control problems is given in Kučera (1979). Also see
Kučera (1984, 1991), and Mosca, Giarre, and Casavola (1990). Choice of sam
pling interval for stochastic control is discussed in the books mentioned before,
and also in MacGregor (1976).

The intersample variation of the variance is discussed in De Souza and
Goodwin (1984) and Lennartson and Söderström (1986).

13

Identification

13.1 Introduction

The notion of a mathematical model is fundamental to science and engineering.
A model is a very useful and compact way to summarize the knowledge about
a process. A model is also a very effective tool for education and communica
tion. The design methods in the previous chapters assume that models for the
process and the disturbances are given. The process models can sometimes be
obtained from first principles of physics. It is more difficult to get the models
of the disturbances, which are equally important. These models often have to
be obtained from experiments. The types of models that are needed for the de
sign methods presented here are either statespace models (internal models)
or inputoutput models (external models). The models for the disturbances are
for the internal models given as dynamic systems driven by white noise. For
external models the disturbances are given in terms of spectral densities and
covariance functions. Models for disturbances can, however, only rarely be de
termined from first principles. Experiments are thus often the only way to get
models for the disturbances.

A process cannot be characterized by one mathematical model. A process
should be represented by a hierarchy of models ranging from detailed and com
plex simulation models to very simple models, which are easy to manipulate
analytically. The simple models are used for exploratory purposes and to obtain
the gross features of the system behavior. The complicated models are used for
a detailed check of the performance of the control system. The complicated mod
els take a long time to develop. Between the two extremes, there may be many
different types of models. The trademark of good engineering is to choose the
right model for each specific purpose.
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