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Harry Nyquist 1889 - 1976

Contributions

◮ Johnson-Nyquist noise

◮ Nyquist frequency

Career

◮ Nilsby Värmland

◮ Folkskola 6 year Nilsby

◮ Teachers college USA

◮ BS EE University North
Dakota

◮ PhD Physics Yale 1917

◮ Bell Labs 1917-1954

◮ IEEE Medal of Honor 1960

◮ ASME Nyquist lecture

Statistical Physics

◮ The galvanometer paradox

◮ The fluctuation-dissipation theorem; fluctuations are associated
with energy dissipation

◮ Einstein (Brownian motion), Johnson-Nyquist (Resistor noise)
and many other

◮ Boltzmann’s Equipartition Principle
Consider a collection of particles in thermal equilibrium, all
particles then have the average energy 1

2 kB T , where
kB = 1.38$ 10−23 [J/Kelvin] is Boltzmann’s constant

◮ For a system in thermal equilibrium energy is distributed so that
each state (degree of freedom) has the energy 1

2 kBT

The Problem of Units 2 and π

Notice different units Hz or rad/s, positive or negative frequencies and
different ways of placing the factor 2π

φ(ω ) = 1
2π

∫ ∞

−∞
e−iω tr(t)dt, r(t) =

∫ ∞

−∞
eiω tφ(ω )dω

Using f in Hz instead of ω in radians/s, the relations between spectral
density and covariance function becomes

S̄( f ) =
∫ ∞

−∞
e−2π i f tr(t)dt = 2

∫ ∞

0
r(t) cos (2π f t)dt

r(t) =
∫ ∞

−∞
e2π i f tS̄( f )d f = 2

∫ ∞

0
S̄( f ) cos (2π f t)d f

where S̄( f ) = 2πφ(2π f ). A good rule is to define spectral density so
that the area under the spectral density represents the mean square
fluctuations.

Johnson-Nyquist Noise

A classic paper on noise in electric amplifiers was written by Schottky
in 1918 who conjectured two physical mechanism, shot noise and
thermal noise. Johnson at AT&T made very careful measurements of
thermal noise in 1928. He found that the thermal noise in a resistor
was proportional to resistance R and temperature T . His colleague
Nyquist gave a very nice physical explanation by combining statistical
thermodynamics with transmission line theory. In particular Nyquist
found that the mean square voltage fluctuations when current flows
through a resistor is

V 2 = 4kBT R∆ f

where kB = 1.38$ 10−23 [J/Kelvin] is Boltzmann’s constant, T
temperature and f [Hz] the bandwidth.

A Beautiful Example of Stochastic Modeling

Johnson: The results were discussed with Dr. H. Nyquist, who in a
matter of a month or so came up with the famous formula

V 2 = 4kBT R∆ f .

for the effect, based essentially on the thermodynamics of a telephone
line, and covering almost all one need to know about thermal noise.

Theoretical physicist from Bell: Nyquist’s fusing of concepts from two
quite different fields, statistical mechanics and electrical engineering,
points out what has been a particular strength of Bell Labs work in
theoretical physics: the diversity of expertise among the theoretical
staff, and the propensity of many of them to shift their attention from
one area to another, transferring useful concepts in the process.

Nyquist’s Derivation

E. B. Johnson Thermal agitation of electricity in conductors. Phys.
Rev. 32(1928)97-109.

H. Nyquist Thermal agitation of electric charge in conductors. Phys.
Rev. 32(1928)110-113.

Consider a long non-dissipative transmission line with a resistor R at
each end. Let the inductance and capacitance per unit length be L
and C and choose R =

√
(L/C) which gives no reflections. If the

resistors are at the same temperature and in thermal equilibrium.
Energy is thus transmitted between the resistors. The transmitted
energy can be trapped by short circuiting the line which gives standing
waves with perfect reflection. By computing the energy stored in the
line we can obtain the energy transmitted by the resistors.

Nyquist’s Derivation

To compute the trapped energy we introduce the length of the line {
and the transmission velocity v. The standing wave has frequencies
f = nv/2{, where n is an integer.. Provided that { is sufficiently large
the frequencies can be arbitrarily dense. The number of modes in a
frequency interval ∆ f is thus n = 2{∆ f/v. According to Boltzmann’s
equipartition law the energy of the standing waves is then
kTn = 2{kBT∆ f/v. Since the time to pass the cable is {/v the
average power is thus 2kBT∆ f . The power transmitted from each
resistor is thus 2kBT∆ f . Let the average voltage generated by
thermal noise in a resistor be V , the current is then I = V/2R and
the power is RI2/4 equating this with the transmitted power gives

V 2 = 4kBT R∆ f

Single sided spectrum!

1



Relations to SDE

Since formally V = dw/dt the voltage variations has the covariance
function

rV (t) = 2kBT Rδ (t)
The corresponding spectral density is

φ(ω ) = 2kBT R
2π

= kBT R
π

[V 2s/rad] = 2kBT R [V 2/H z]

Thermal noise in a resistor can thus be represented by white noise
with the spectral density kB RT/π [V 2 s/rad] = 2kBT R [V 2/H z].
The corresponding Wiener process has incremental covariance
Edw2 = 2RkbTdt. Notice that the incremental covariance is
proportional to the resistance R and temperature T .

Nyquist’s formula is 4kBT R since he only considers positive
frequencies his bandwidth half of ours.

Sources of Noise in Electro-Mechanical Systems

Spectrum and covariance functions:

φ(ω ) = 1
2π

∫ ∞

−∞
e−iω tr(t)dt, r(t) =

∫ ∞

−∞
eiω tφ(ω )dω

◮ Johnson-Nyquist resistor noise is modeled as a white noise
voltage in series with the resistor. The voltage is derivative of
Wiener process with incremental covariance rwdt = 2kBT Rdt,
where kB = 1.38$ 10−23 [J/Kelvin] is Boltzmann’s constant, R
is the resistance and T the absolute temperature of the resistor.

◮ Thermal noise in mechanical systems modeled as white noise
force, derivative of Wiener process with incremental covariance
r f dt = 2kBTCdt in series with the damper, C is the damping
constant [Ns/m].

Johnson-Nyquist Noise

Consider an RL circuit which is described by

L
dI
dt
+ RI = V

Assuming that voltage variations are modeled as
white noise, i.e. V = dw/dt, where

w

is a Wiener process with incremental covariance rwdt. The system
can then be described by the stochastic differential equation

LdI + RIdt = dw, dI = −R
L

Idt+ 1
L

dw

Johnson-Nyquist Noise ...

Consider the stochastic differential equation

dI = −R
L

Idt+ 1
L

dw

Introduce the variance of the current fluctuations P = EI2

dP
dt
= −2

R
L

P+ rw

L2

In steady state we have rw = 2RLP. The average energy stored in
the inductor is LEI2/2 = PL/2. Boltzmann’s equipartition law gives

1
2

LP = 1
2

kBT

which gives PL = kBT and rw = 2kBT R.

In General

It is straight forward to analyse linear stochastic differential equations
(SDE).

◮ Formulate the stochastic differential equation

◮ When the model is given the evolution of covariances are given
by linear differential equations

◮ For simple problems we can solve the equations analytically

◮ Steady state variances are given by linear equations

◮ For systems of higher order we can use numeric linear algebra,
Matlab programs are available

Thermal Noise in an Accelerometer

A simple model of a MEMS accelerometer is

m
d2x
dt2 + c

dx
dt
+ kx = f

Collisions of air molecules in thermal motion generates the forces f
which we model as white noise. To analyze the system we first write it
in state space form by introducing x1 = x and x2 = dx/dt. The
equation then becomes



dx1
dt

dx2
dt


 =




x2
− k

m x1 − c
m x2 + 1

m f


 =




0 1
− k

m − c
m







x1
x2


+




0
1
m


 f

The model can be written in standard form as

dx
dt
=




0 1
−k/m −c/m


 x +




0
1/m


 f

Thermal Noise in an Accelerometer ...

Assuming that the force is white noise the system is described by the
stochastic differential equation

dx =



0 1
−k/m −c/m


 xdt+




0
1/m


 d f

To determine the magnitude of the fluctuations we use the variance
equation

dP
dt
= AP+ PAT + R

=



0 1
−k/m −c/m


 P+ P




0 1
−k/m −c/m




T

+



0 0
0 r f /m2




The steady state solution is given by

AP+ PAT + R = 0

Steady State Variations

We have

AP =



0 1
−k/m −c/m







p11 p12
p12 p22




=



p12 p22
−(kp11 + cp12)/m −(kp12 + cp22)/m




The equation AP+ PAT + R = 0 then becomes

2p12 = 0

p22 −
kp11 + cp12

m
= 0

−2
kp12 + cp22

m
+ r f

m2 = 0

Hence p12 = 0, p22 =
r f

2cm
and p11 =

r f

2ck
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Steady State Variations ...

We have p11 =
r f

2ck
, p12 = 0 and p22 =

r f

2cm
. To determine r f we

use Boltzmann’s equipartition law. This gives

1
2

kEx2
1 =

1
2

kp11 =
1
2

kr f

2ck
= 1

2
cBT

This gives r f = 2ckBT . Notice that we get the same result if
compute the average energy based on the velocity, i.e.

1
2

mEx2
2 =

1
2

mp22 =
1
2

mr f

2cm
= 1

2
kBT

We thus find that thermal noise gives the following variances of
position and velocity of the mass

Ex2
1 = p11 =

r f

2ck
= kBT

k
, Ex2

2 = p22 =
r f

2cm
= kBT

m

Thermal Fluctuations

The effect of thermal fluctuations on the accelerometer can be
represented as a force which is white noise with covariance function

r f (t) = 2ckBTδ (t)

The corresponding Wiener process has incremental covariance
2ckBTdt. The corresponding spectral density is

φ(ω ) = 2ckBT
2π

= kBcT
π

[N2/rad/s] = 2kBcT [N2/H z]

Notice that spectral density is proportional to the damping coefficient c.

The fluctuation-dissipation theorem!!

Pink Noise

Resistors, semiconductors and bonds all have many small defects that
create variations in conductivity. The conductivity variations generate
signal variations when driven by a current. The fluctuations depend on
the strength of the current. The noise is not white but it varies as 1/ f
and appears as a slow drift. There are many names The noise goes
by many names pink noise, flicker noise or 1/ f noise. The noise level
is often specified by giving the frequency f0, where the 1/ f noise
matches the level of input white noise or current noise. The level
varies significantly with the type and quality of the operational
amplifier, typical ranges are f0 = 1− 1000 Hz.

Pink Noise Behavior

Modeling Pink Noise

Ensemble of first order system in thermal equilibrium. Equipartition
law implies that they have the same energy. Let the bandwidth of a
subsystem be a, spectral density of an individual system is
proportional to

φ = a
ω 2 + a2 ,

Assuming all with energy logarithmically distributed, then

∫ ∞

0

a
a2 +ω 2 d log a =

∫ ∞

0

1
a2 +ω 2 da = 1

ω
arctan

a
ω

∣∣∣
∞

0
= π

2ω
.

The spectral density of ensemble is thus proportional to 1/ω or 1/ f

∫ f2

f1

d f
f
= log

f2

f1

Pink Noise
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10
−2

10
−1

10
0

10
1

10
2

f

S
(f
)

S( f ) = 1
f

,
∫ f2

f1

S( f ) = log
f2

f1

The same energy for each octave

Pink Noise Sources of Noise in Electrical Circuits

◮ Shot noise
◮ White noise with incremental covariance rsdt = qI dt where

q = 1.6$ 10−19 C is the charge of the electron and I is the
current. Typical op-amps 0.1 f A/

√
H z to 10pA/

√
H z

◮ Johnson-Nyquist noise 4kBT R∆B
◮ White with incremental covariance rwdt = 2kB T Rdt

◮ Amplifier noise
◮ Voltage noise OP27: 3nV/

√
H z

◮ Current noise shot noise in bias current
OP27: 1pA/

√
H z

AD795: 0.6 f A/
√

H z
◮ 1/ f noise often specified as corner frequency typical values for

op-amps 2Hz to 2kHz

3


