
1

Cont rol Design for Force Feedback
MEMS Instruments

K. J. Åström

Department of Automatic Control LTH,
Lund University

Acknowledgements

◮ Kimberly Turner Group at UCSB (ME)
Laura Oropeza-Ramos, Chris Burgner, Zi Yie, Barry
Demartini, Kari (Lukes) Moran

◮ Paul Hansma Group at UCSB (Physics)
Johannes Kindt, Georg Schitter (Now at Delft)

◮ Forrest Brewer Group at UCSB (ECE)
Nitin Kataria

◮ Georg Schitter Delft

Thank you for introducing me to
a fascinating field for control applications
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Int roduc tion

◮ Interesting and useful devices in dynamic development
AFM, Accelerometers, Gyroscopes, Hard disks, Optical
memories ...

◮ Small scale
Scaling of surface l2 vs volume l3: friction important

◮ Oscillatory (nonlinear) dynamics with low damping
◮ Noise: Brownian motion, Johnson-Nyquist, tunneling, ....
◮ Parameter uncertainty and parameter variations
◮ Fast sampling MHz, challenging implementation
◮ Control is often mission critical, noise, robustness,

dynamics, nonlinearities all have to be balanced
◮ Rich area for applying control BUT not standard control

problems

Force Feedback

◮ Classic idea with tremendous impact
◮ Game changer in instrument design

Open loop, all
components matter

Bandwidth ω b =
√

k/m
Sensitivity = ka/k
Invariant ω 2bS = ka/m

Closed loop, actuator
only critical element

Bandwidth depends on
feedback system

Error signal also useful!
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Design a Sensor not a Cont rol ler

Key idea: Exploit error signal and not just the feedback signal

Model of sensor system

dx

dt
= Ax + Bww+ Bu y= Cx,

x sensor state, w signal to be measured u actuation signal.
Design instrument to have w and u co-located (Bw = kB).

Model for signal to be measured

dw

dt
= 0, (constant but unknown)

dz

dt
= Awz, w = Cwz (general)

Characterized by Aw. Tune sensor to spectrum of acceleration
to be measured (automotive).

Cont rol Structure

System model

dx

dt
= Ax + Bww+ Bu, y= Cx

dz

dt
= Awz, w = Cwz

Standard controller structure based on Kalman filter and state
feedback

dx̂

dt
= Ax̂ + BwCw ẑ+ Bu+ Lx(y− Cx̂)

dẑ

dt
= Aw ẑ+ Lw(y− Cx̂) = Aw ẑ+ Lw(y− ŷ)

u = −Kx x̂ − Kz ẑ.

◮ Design instrument to make BwCw close to B
◮ Determine filter gains L and Lw to give good estimates
◮ Determine feedback gains K and Kw to give small errors
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Ins trument Transfer Func tion

Transfer function from w to ŵ

Gŵw =
(

I+F(s)
)−1
F(s), F(s) = Cw(sI−Aw)−1Lw(sI−A−LxC)−1Bw

For Aw = 0 (constant but unknown or slowly varying
acceleration) the expression simplifies to

Gŵw =
LzC(sI − A+ LxC)−1Bw
s+ LzC(sI − A+ LxC)−1Bw

, Gŵw(0) = 1

◮ Does not depend on feedback gains Kx and Kz!
◮ Does not depend on B
◮ Does depend on filter gains

Many design options:

◮ Optimize with respect to disturbances and uncertainty
◮ Shape the frequency response Gŵw

Choos ing Feedback Gains

Closed loop dynamics

dx

dt
= Ax + Bww− BKx x̂ − BKzCwŵ

= (A− BKx)x + (BwCw − BKz)z+ BKx x̃ + BwKz z̃
◮ Physical interpretation
◮ Make effect of external signal w small by matching BKz to
BwCw (instrument design). The term (BwCw − BKz)z
vanishes if BKz = BwCw

◮ Make terms proportional to x̃ and z̃ small by good
estimator design

◮ Choose Kx to balance decay rate (eigenvalues of
A− BKx) to disturbance amplification (BKx)

◮ Design gains for robustness

Sensor Resolut ion

dx

dt
= Ax+Bww+Bu, y= Cx, dz

dt
= Awz, w = Cwz

Augmented state x = (x; z) small abuse of notation

Aa =
[

A BwCw
0 Aw

]

, Ba =
[

B

0

]

, Ca =
[

C 0
]

, Cwa =
[

0 Cw
]

dx = Aaxdt+ Baudt+ dv
dy= Caxdt+ de
Rx = EdvdvT

Re = EdedeT

Kalman filter

AaP+ PAa+Rx− PCTa R−1y CaP = 0, L =
[

Lx
Lw

]

= PCTa R−1y

Variance of estimate σ 2ŵ = CwaPCTwa

Cons tant Acceleration, Fixed Estimator Gains

dx

dt
= Ax+Bww+Bu, y= Cx, dz

dt
= Awz, w = Cwz

Augmented state z = (x; z)

Aa =
[

A BwCw
0 Aw

]

, Ba =
[

B

0

]

, Ca =
[

C 0
]

, Cwa =
[

0 Cw
]

dx = (Aa − LCa)xdt+ Baudt+ dv
dy= Caxdt+ de
Rx = EdvdvT = diag(0... 0)
Re = EdedeT

Variances of estimation error given by the Lyapunov equation

AaP+ PAa + Rx = 0

Variance of estimate σ 2ŵ = CwaPCTwa
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The Tunne ling Accelerometer

Courtesy of Laura Oropeza-Ramon

Tunne ling Tip

Courtesy of Laura Oropeza-Ramon

Block Diagram

z I
 Tip Amplifier MassActuator

u y
F

w
nth nt nR

Actuator:

F = Nǫ0h

d
(V0 + u)2, δ F = kaδ u, ka = 2

Nǫ0hV0

d

Mass: m
d2z

dt2
+ cdz
dt
+ kz = F +mw+ nth

Tunneling tip:
I = k0t Vve−α x

√
φ , δ I = kt Ieδ x + nt, kt = α

√
φ

Amplifier: V = kv(RI + nR) (simplified)
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Preampl ifier

Capacitors needed to stabilize the circuit. Opamps also have
dynamics.

Noise Sour ces

◮ Thermal noise white noise force with spectral density
4ckBT (dissipation fluctuation theorem), c damping
coefficient, kB = 1.38$ 10−23 [J/Kelvin] Boltzmann’s
constant and T temperature

◮ Tunneling noise modeled as shot noise which is white
noise with spectral density q02I, where q0 = 1.6$ 10−19 C
is the charge of the electron and I is the current.

◮ Model resistors by an ideal resistor with a voltage source in
series representing the Johnson-Nyquist noise which is
white noise with spectral density 4kBTR

◮ Amplifier noise
◮ 1/ f noise

Sensor Model

Constant but unknown acceleration, simplified preamp model

dx = Aaxdt+ Baudt+ dv, dy= Caxdt+ de,

Aa =

















0 1 0

−k/m −c/m −1
0 0 0

















, Ba =

















0

ka/m
0

















Cy =


ks 0 0



 , Cw =


0 0 1





Rx = EdvdvT = diag(0 , 2ckBT/m2, rw)
Ry = E(de)2 = k2v(2kBTR + R2q0 I0).

Sensor transfer function

Gŵw(s) =
l3ks

s3 + (ksL1 + c/m)s2 + (ks(l1c/m + l2) + k/m) + l3ks

Pick l1, l2 and l3 to shape the transfer function Gŵw(s)

Sensor Transfer Func tion
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Trade-of f between Bandwidth and Variance

◮ Choose filter gains to shape sensor transfer function
◮ Bandwidth-variance compromise
◮ Design issues
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Block Diagram

Physical interpretations!
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First Attempt

◮ Initialize - Initiate tunneling, get from 1 µm to 1 nm safely
◮ Switched integrating controller
◮ Regulate - maintain tunneling
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Hunt for Noise Sour ces

◮ Originally very high noise levels
◮ Guide-lines from physical modeling very useful
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◮ Redesign electronics: preamplifier, DAC with better
resolution

◮ Replace PC by National Instruments Compact Rio

Experimental Set-up

Courtesy of Chris Burgner

Improved Electroni cs
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Cont rol Signal has Long Term Drift 1/ f
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Summary

◮ Interesting application area for control
◮ Systems with low damping

Truxal 1961: The design of feedback systems to effect
satisfactorily the control of very lightly damped physical
systems is perhaps the most basic of the difficult control
problems.

◮ Noise
Thermal, Johnson-Nyquist, tunneling, 1/ f

◮ Integrated systems and control design
◮ A design framework

Insight and understanding
Controller structure
Design trade-offs
State models are attractive numerically
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Parameters

Boltzmann’s constant kB 1.3807$ 10−23 J/K
Charge of electron q0 1.602$ 10−19 C
Tunneling constant α 1.025 1/Å

√
eV

Tunneling barrier φ 0.05 eV
Temperature T 293 K

Mass m 4.917 µg
Resonant frequency f0 4.2 kHz

Q-value Q 10
Actuator gain ka 9.2$ 10−7 N/V
Tunneling gain kt 4 A/m

Preamp resistance R 10.2 MΩ

Voltage gain kv 2
Sensor gain ks = ktkvR 21.6 MV/m


