Exercise 5

- 1. [†] Prove the third row in the table on page 19 of Lecture 5. (Note that the formulae in this table correspond to stabilization with *negative* feedback.)
- 2. Prove the last row in the table on page 19 of Lecture 5.
- 3. Consider a plant with additive uncertainty $P_{\Delta} = P_0 + W\Delta$ for $\Delta \in \gamma \cdot \mathcal{B}RH_{\infty}$, where γ is the radius of the admissible uncertainty,

$$P_0 = \frac{1}{s-1}$$
 and $W = \frac{s+0.01}{s+1}$.

Find a stabilizing controller that maximizes the uncertainty radius γ .

- 4. † Problem 8.1 in the course book.
- 5. Consider the family of plants $P(s,h) = \frac{1}{s}e^{-hs}$ with $h \in [0,1]$. In this problem we are going to bound P(s,h) using the additive uncertainty model $P_{\Delta} = P_0 + W\Delta$ for $\Delta \in \mathcal{B}RH_{\infty}$.
 - Choose $P_0(s) = \frac{1}{s}$ as a nominal plant. Find an explicit expression for

$$R(w) = \max_{h \in [0,1]} (|P(iw,h) - P_0(iw)|)$$

and calculate $\lim_{w\to 0} R(w)$.

- Draw schematic representation of the family of plants P(s, h) on the Nyquist diagram.
- Construct a first-order uncertainty weight W.
- Propose a way for constructing a more tight additive uncertainty model. (Do not calculate anything, just give an idea.)
- 6. Problem 8.12 in the course book.