Exercise 3

1. Consider the definitions of upper and lower LFTs $\mathcal{F}_l(\cdot)$ and $\mathcal{F}_u(\cdot)$ in the beginning of Lecture 3. Prove that

-
$$\mathcal{F}_u(\Phi, \Omega) = \mathcal{F}_l(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Phi \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \Omega)$$

- $\Theta = \mathcal{F}_l(\Phi, \Omega) \iff \Omega = \mathcal{F}_u(\Phi^{-1}, \Theta)$ (if Φ is invertible)

- 2. [†] Consider a measured disturbance attenuation problem depicted on Fig. 1, where P is the plant, K is a feedback controller and W_* are the weights for the external signals. The aim is to lessen the influence of the disturbance d on the output y, while keeping the control effort u not too large. The measurement of d corrupted with the noise n is available to the controller.
 - Construct a generalized plant for the problem.
 - Construct a generalized plant for the problem with an additional constraint on the feedback part of the controller to contain integrator.

Figure 1: Measured disturbance rejection

- 3. Prove that if the state-space conditions for stabilizability (page 16 in Lecture 3) hold, then the problem is indeed stabilizable. (Hint: show that lcf of a required form can be constructed for the generalized plant.)
- 4. [†] Consider the following three generalized plants:

$$G_{i} = \begin{bmatrix} \frac{1}{s+5} & 3\\ 0 & 1\\ 1\\ \frac{1}{2} & \frac{1}{s+5} \end{bmatrix}, \ G_{ii} = \begin{bmatrix} \frac{1}{s+5} & 3\\ 0 & 1\\ 1\\ \frac{1}{2} & \frac{1}{s-5} \end{bmatrix}, \ G_{iii} = \begin{bmatrix} \frac{1}{s-5} & 3\\ 1\\ \frac{1}{s-5} & \frac{1}{s-5} \\ \frac{5}{5} & 0 \\ \frac{1}{5} & \frac{1}{s-5} \end{bmatrix}.$$

Are they internally stabilizable? If yes, parametrize all stabilizing controllers and find, if exists, one Q for which the controller is static.

5. Consider the stabilization problem for the plant $P(s) = \frac{1}{s-1}$ using positive feedback.

- Construct a doubly coprime factorization of P(s) for which all eigenvalues of A + BF and A + LC are at -1. Using this factorization find the parametrization of all stabilizing controllers for P(s).
- The same as in the previous item but with eigenvalues at -2.
- Obviously, the static controller K(s) = -k stabilizes P(s) for all k > 1. For each of the parametrizations, find the parameters Q(s) producing this static controller.
- 6. Consider a 2DOF control problem depicted in Fig. 2 (left). Two groups of engineers decided to work on this problem independently. The first group will use classical methods to design feedback controller K for the setting on Fig. 2 (right). Their aim is to guarantee internal stability and disturbance rejection. The second group will address tracking behavior via minimization

$$\min \left\| \begin{bmatrix} I \\ 0 \end{bmatrix} + \begin{bmatrix} -N \\ M \end{bmatrix} Q_1 \right\|_2,$$

where $P = NM^{-1}$ is the rcf of the plant and Q_1 is the first part of the Youla parameter, see page 23 in Lecture 3.

Figure 2: 2DOF tracking

- Express the resulting controller C in terms of K and Q_1
- They decided to implement the controller as shown on Fig 3. What is the natural choice for X_1, X_2 and X_3 ?

(Express in terms of K and Q_{1} .)

Figure 3: 2DOF controller implementation