Exercise 1

- 1. Reading assignment
 - Chapter 2 in the course book (refresh in mind).
 - Read \S 4.1 and \S 4.2 in the course book.
- 2. Problem 2.2 in the course book
- 3. Problem 2.4 in the course book
- 4. ^{\dagger} Problem 2.5 in the course book¹
- 5. Consider the following Hermitian block matrix

$$\Phi = \left[\begin{array}{cc} \Phi_{11} & \Phi_{12} \\ \Phi_{21} & \Phi_{22} \end{array} \right].$$

with $\Phi'_{11} = \Phi_{11}, \ \Phi'_{22} = \Phi_{22}$ and $\Phi'_{12} = \Phi_{21}$. Prove that $\Phi > 0$ only if $\Phi_{11} > 0$ and $\Phi_{22} > 0$.

- 6. Consider a space of continuous functions with continuous derivatives. Which of the following expressions qualifies as a norm?
 - (a) $\sup_t |\dot{u}(t)|$
 - (b) $|u(0)| + \sup_t |\dot{u}(t)|$
- 7. For the space of the functions $f : \mathbb{R} \to \mathbb{R}^n$, prove that the definition

$$\langle f,g \rangle = \int_{-\infty}^{\infty} \operatorname{trace}\left(g'(t)f(t)\right) dt$$

qualifies as an internal product.

8. Consider a space of continuous functions on $f:[0,1]\to\mathbb{R}$ with standard inner product and norm

$$\langle f,g \rangle := \int_0^1 g(t)f(t)dt, \quad ||f|| := \sqrt{\int_0^1 f(t)^2 dt}.$$

Consider a third order polynomial $v = x^3$ and a subspace S spanned by $u_1 = x$ and $u_2 = x^2$. Prove that

$$\underset{u \in S}{\operatorname{argmin}} ||v - u|| = \frac{4}{3}x^2 - \frac{2}{5}x.$$

(Use the projection theorem.)

9. [†] Calculate the \mathcal{H}^2 and \mathcal{H}^∞ distances between

$$G_1(s) = \frac{1}{s+1}, \quad G_2(s) = \frac{1}{s+1}e^{-\theta s}$$

for $\theta = \{0.01, 0.1, 1\}$. How do the distances depend on θ ?

 $^{^1\}mathrm{Problems}$ marked with † are the "hand-in" assignments.