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Intro

Classical loop shaping

- frequency domain method for controller design

- closed-loop design objectives are expressed in terms of
open-loop transfer functions

- open-loop transfer functions are shaped
using lead/lag compensators etc.

- Stability and robustness issues are handled using Nyquist criteria

Our aim is to generalize these ideas for MIMO problems

Robust stability framework from Lecture 5 will play an important role
in this generalization



Single loop setting

Consider a single loop setting

As before we denote

Lo = PC, So = (1 + Lo)
−1, To = I − So,

Li = CP, Si = (1 + Li)
−1, Ti = I − Si

and recall that
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Requirements on the closed-loop transfer functions
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So, SoP - small at low frequencies for tracking
and disturbance rejection

To - small at high frequencies for noise rejection

To, SiC - small with roll-off at high frequencies for robust stability
subject to additive and multiplicative uncertainties

SiC, Ti - not too large to prevent large control effort

This is a rational behind mixed sensitivity problem

Sometimes mixed sensitivity framework is not transparent

We translate these requirements to the open-loop as in classical loop shaping



Translating requirements to the open-loop transfer functions

If σ(Lo) >> 1 (the loop gain is high), then

σ̄(So) ≈
1

σ(Lo)
and σ̄(SoP ) ≈

1

σ(C)

If σ̄(Lo) << 1 (the loop gain is low), then

σ̄(To) ≈ σ̄(Lo) and σ̄(CSi) = σ̄(SoC) ≈ σ̄(C)

For tracking and disturbance rejection we need

σ(Lo) >> 1 and σ(C) >> 1 at low frequencies

For noise rejection and robust stability (for additive uncertainty)

σ̄(Lo) << 1 and σ̄(C) << 1 at high frequencies

Sometimes also Li should be taken into account.



Requirements on the open-loop transfer functions

What should we do with the stability requirement?

- in SISO case it can be captured by Nyquist criteria

- however, this is not readily extendable for the MIMO case

The main idea of the proposed approach is to capture stability issues via
robust stability framework from Lecture 5:

- being far from critical point ⇔ increasing stability margins

- can be handled via H∞ optimization framework



The idea of H∞ loop shaping

- Design the weights Wi and Wo to shape Ps = WoPWi,
which represents the open loop

- For the shaped plant Ps synthesize the controller Ks, maximizing
stability margin towards unstructured uncertainty (H∞ optimization)

- Construct the controller K = WiKsWo

What is suspicious in this algorithm?



The idea of H∞ loop shaping (contd.)

- It is suspicious that we shape Ps = WoPWi,
while the real open-loop transfer matrix is Lo = PWiKWo

- The shape of Lo depends on K, synthesized via the robust
stabilization procedure, and can be different from the shape of Ps

- But there exists a specific uncertainty model which guarantees only
a mild deterioration in the shape of Lo . . .

Our main technical step will be to find a specific uncertainty model for
robust stabilization procedure, which

- results in a simple H∞ optimization problem
having an easy to compute solution

- guarantees that the shapes of Ps and Lo are similar



Robust stability subject to lcf uncertainty

Lcf uncertainty model P∆ = (M̃ + ∆̃M )−1(Ñ + ∆̃N )

with ‖∆̃‖∞ = ‖[∆̃N ∆̃M ]‖∞ ≤ 1/γ = α

The corresponding generalized plant is

G =





0 I

M̃−1 −P

M̃−1 −P





Robust stability is equivalent to

‖Fl(G,K)‖
∞

=

∥

∥

∥

∥

[

K
I

]

(I + PK)−1M̃−1

∥

∥

∥

∥

∞

< γ.



Robust stability subject to lcf uncertainty (state-space)

Consider minimal realization of the plant

P =

[

A B
C 0

]

(For simplicity, we assume that the plant is strictly proper)

Using the material from Lecture 2, it is easy to verify that

[Ñ M̃ ] =

[

A+ LC B L
C 0 I

]

, G =









A −L B
0 0 I
C I 0
C I 0









.

Remark: Since D′

11
D11 = I, we have that

γopt > ‖I‖ = 1 ⇒ αopt = 1/γopt < 1.

αopt will be referred to as “maximal stability radius”.



Robust stability subject to lcf uncertainty (state-space solution)

At this point we can apply solution of the standard H∞ problem.
Two Hamiltonian matrices are

H =

[

A− 1
γ2

−1
LC 1

γ2
−1

LL∗ −BB∗

− γ2

γ2
−1

C∗C −(A− 1
γ2

−1
LC)∗

]

,

J =

[

(A+ LC)∗ −C∗C
0 −(A+ LC)

]

.

Note that in this special case Y = 0 (solution of ARE associated with J).

Theorem

Assuming D = 0, there exists a stabilizing controller K such that

‖Fl(G,K)‖∞ < γ

if and only if γ > 1, H ∈ dom(Ric) and X = Ric(H) ≥ 0.

Remark: The result depends on the choice of L, i.e., on the choice of
coprime factors.



Normalized coprime factorization

We choose left coprime factorization to be“normalized”,
namely, to satisfy

Ñ(s)Ñ∼(s) + M̃(s)M̃∼(s) = I

or equivalently
[

Ñ(s) M̃(s)
]

[

Ñ∼(s)

M̃∼(s)

]

= I

To construct normalized lcf we need to choose L = −Y C∗,
where Y is the stabilizing solution of

AY + Y A∗ − Y C∗CY +BB∗ = 0

Proof: . . .



Robust stability subject to normalized lcf uncertainty

Since M̃ , Ñ is the normalized lcf, multiplication by
[

Ñ M̃
]

does not change the norm. Therefore,

‖Fl(G,K)‖
∞
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∥

∥

∥
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∥
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∥

∥
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]
∥

∥

∥

∥

=

∥

∥

∥

∥

[

P
I

]

(I + PK)−1
[

K I
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To PSi

KSi Si

]∥

∥

∥

∥

Does not depend on factorization

All closed-loop transfer function are equally penalized

- well balanced optimization

- does not tend to perform undesirable pole-zero cancellations



Explicit expression for γopt

Once normalized lcf is used, explicit expression for αopt can be derived.

Theorem

The maximal stability radius for the robust stability problem with a
normalized lcf uncertainty is given by

αopt =

√

1−
∥

∥

[

M̃ Ñ
]
∥

∥

2

H
< 1

where ‖ · ‖H stands for the Hankel norm.

Remark: Hankel norm is the maximal Hankel singular value, namely,

∥

∥

∥

∥

[

A B
C D

]∥

∥

∥

∥

H

=
√

ρ(PQ),

where P and Q are the controllability and observability Gramians,
respectively.



State-space formulae for the solution

The state-space solution can be derived in terms of the following equations

AY + Y A∗ − Y C∗CY +BB∗ = 0 (1)

Q(A− Y C∗C) + (A− Y C∗C)∗Q+ C∗C = 0 (2)

Theorem

Assume D = 0 and denote L = −Y C∗, where Y ≥ 0 is the stabilizing solution
of (1). Let Q be a solution of (2). Given γ > 0, there exists stabilizing
controller satisfying

∥

∥ [KI ] (I + PK)−1M̃−1
∥

∥

∞

< γ iff

γ > γopt =
(

1− ‖Ñ M̃‖2H
)

−1/2

= (1− ρ(Y Q))−1/2

Moreover, a controller achieving γ > γopt can be given by

K(s) =

[

A−BB∗X − Y C∗C −Y C∗

−B∗X 0

]

, X =
γ2

γ2
− 1

Q

(

I −

γ2

γ2
− 1

Y Q

)

−1

.



Relation to Gain and Phase Margins

It turns out that in the SISO case the stability radius α = ‖Fl(G,K)‖−1
∞

can
be related to the classical stability margins.

Theorem

Let P be a SISO plant and K be a stabilizing controller. Then

gain margin ≥ 1 + α

1− α
,

phase margin ≥ 2 arcsin(α).

Proof: For SISO system at every ω

α =
1

‖ . . . ‖∞
≤ |1 + P (jω)K(jω)|

∥

∥

∥

∥

[

1
K

]

[

1 P
]

∥

∥

∥

∥

=

=
|1 + P (jω)K(jω)|

∥

∥

∥

∥

[

1
K

]∥

∥

∥

∥

∥

∥

[

1 P
]∥

∥

=
|1 + P (jω)K(jω)|

√

1 + |P (jω)|2
√

1 + |K(jω)|2
.



Relation to Gain and Phase Margins (contd.)

So at frequencies where k := −PK ∈ R+ we have

α ≤ |1− k|
√

(1 + |P |2)(1 + k2/|P |2)
≤

≤ |1− k|
√

minP {(1 + |P |2)(1 + k2/|P |2)}
=

|1− k|
|1 + k|

from which the gain margin result follows.

Similarly at frequencies where PK = −eθ

α ≤ |1− eθ|
√

(1 + |P |2)(1 + 1/|P |2)
≤

≤ |1− eθ|
√

minP {(1 + |P |2)(1 + 1/|P |2)}
=

=
2| sin(θ/2)|

2

which implies the phase margin result.



Intermediate summary

We saw that the problem of robust stability subject to normalized lcf
uncertainty has many appealing properties:

- maximization of stability radius results in well balanced optimization

- admits explicit solution (no iterations needed)

- related with classical stability margins

This is the time to go back to our original problem:

Are there guarantees that the shapes of Ps and Lo are similar?



Degradation at the low frequencies

At the low frequencies we need large σ(Lo) and σ(Li). It is easy to verify that

σ(Lo) = σ(PWiKsWo) = σ(W−1
o PsKsWo) ≥ σ(Ps)σ(Ks)

1

κ(Wo)
,

σ(Li) = σ(WiKsWoP ) = σ(WiKsPsW
−1
i ) ≥ σ(Ks)σ(Ps)

1

κ(Wi)
,

where κ(M) = σ̄(M)/σ(M) is the conditional number.

Small σ(Ks) might cause problem, yet, this can not happen
if σ(Ps) is large and α is not small.

Theorem

Any Ks guaranteeing stability radius α = 1/γ satisfies

σ(Ks) ≥
σ(Ps)−

√

γ2 − 1
√

γ2 − 1σ(Ps) + 1
if σ(Ps) >

√

γ2 − 1.

Corollary: If σ(Ps) >>
√

γ2 − 1 then σ(Ks) ≥ 1√
γ2

−1
.



Degradation at the high frequencies

At the high frequencies we need small σ(Lo) and σ(Li). It is easy to verify that

σ̄(Lo) = σ̄(PWiKsWo) = σ̄(W−1
o PsKsWo) ≤ σ̄(Ps)σ̄(Ks)κ(Wo),

σ̄(Li) = σ̄(WiKsWoP ) = σ̄(WiKsPsW
−1
i ) ≤ σ̄(Ks)σ̄(Ps)κ(Wi),

Large σ̄(Ks) might cause problem, yet, this can not happen
if σ̄(Ps) is small and α is not small.

Theorem

Any Ks guaranteeing stability radius α = 1/γ satisfies

σ(Ks) ≤
√

γ2 − 1 + σ(Ps)

1−
√

γ2 − 1σ(Ps)
if σ(Ps) <

1
√

γ2 − 1
.

Corollary: If σ(Ps) << 1/
√

γ2 − 1 then σ(Ks) ≤
√

γ2 − 1.



Interpretation for maximal stability radius αopt

If αopt is not small, i.e., is not far from 1, then

- the shapes of Ps and Lo are close at the low and at the high frequencies

- the proposed open loop shape can be achieved without loosing stability

The fact that αopt << 1 indicates that the shape of Ps is difficult to achieve

and the constraints should be relaxed.



H∞ loop shaping procedure

1 Choose Wi and Wo to shape Ps = WoPWi.
There should be no unstable pole-zero cancellations in Ps.
At this stage internal stability is not taken into account.

2 Compute normalized lcf for Ps and αopt =
√

1−
∥

∥

[

M̃ Ñ
]∥

∥

2

H
. If

αopt << 1 relax loop shaping requirements by adjusting the weights

3 If αopt is acceptable select γ > 1/αopt and synthesize stabilizing
controller Ks that satisfies

∥

∥

∥

∥

[

K
I

]

(I + PK)−1M̃−1

∥

∥

∥

∥

∞

< γ.

4 Construct the final controller K = WiKsWo.



Closed loop transfer matrices

Denote σi = σ(Wi), σi = σ(Wi), κi = κ(Wi).

Theorem: Let P be the nominal plant and let K = W1K∞W2 be the
controller designed by loop shaping. Then if bPs,K∞

≥ 1/γ then

σ(K(I + PK)−1) ≤ γσ(M̃s)σ1σ2,

σ((I + PK)−1) ≤ min{γσ(M̃s)κ2, 1+γσ(Ñs)κ2},
σ(K(I + PK)−1P ) ≤ min{γσ(Ñs)κ1, 1+γσ(M̃s)κ1},

σ((I + PK)−1P ) ≤ γσ(Ñs)

σ1σ2

,

σ((I +KP )−1) ≤ min{1+γσ(Ñs)κ1, γσ(M̃s)κ1},
σ(P (I +KP )−1K) ≤ min{1+γσ(M̃s)κ2, γσ(Ñs)κ2}

where

σ(Ñs) = σ(Ns) =

(

σ2(Ps)

1 + σ2(Ps)

)1/2

,

σ(M̃s) = σ(Ms) =

(

1

1 + σ2(Ps)

)1/2

.



What did we study today?

- Normalized coprime factorization

- Robust stability subject to normalized lcf disturbance

- Solution convenient for computation
- Explicit formula for maximal stability radius

- H∞ loop shaping procedure

- Bounds on the degradation of open loop due to the
introduction of stabilizing controller

- Interpretation of the maximal stability radius


