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Intro

Classical loop shaping

- frequency domain method for controller design

closed-loop design objectives are expressed in terms of
open-loop transfer functions

open-loop transfer functions are shaped
using lead/lag compensators etc.

Stability and robustness issues are handled using Nyquist criteria

Our aim is to generalize these ideas for MIMO problems

Robust stability framework from Lecture 5 will play an important role
in this generalization



Single loop setting

Consider a single loop setting

As before we denote

Lo=PC, S,=(1+Ly)", T,=I-8,,
Li=CP, Si=Q1+L)"', T,=I-25;

and recall that

r
el [ So -SSP -S, T, d;
u o SZC —Ti —SZC —SZC do
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Requirements on the closed-loop transfer functions

.,
[ S -S.p -S, T, d;
Tl sC - —SC -S.C || do

n

small at low frequencies for tracking
and disturbance rejection

small at high frequencies for noise rejection

small with roll-off at high frequencies for robust stability
subject to additive and multiplicative uncertainties

not too large to prevent large control effort

This is a rational behind mixed sensitivity problem

Sometimes mixed sensitivity framework is not transparent

We translate these requirements to the open-loop as in classical loop shaping



Translating requirements to the open-loop transfer functions
If o(L,) >> 1 (the loop gain is high), then

7(S,) =~ and 5(SoP) = —

If 7(L,) << 1 (the loop gain is low), then

5(T,) ~5(L,) and &(CS;) = 5(S,C) ~ (C)

For tracking and disturbance rejection we need

a(L,) >>1and g(C) >> 1 at low frequencies

For noise rejection and robust stability (for additive uncertainty)

d(L,) << 1and 5(C) << 1 at high frequencies

Sometimes also L; should be taken into account.



Requirements on the open-loop transfer functions

What should we do with the stability requirement?
- in SISO case it can be captured by Nyquist criteria

- however, this is not readily extendable for the MIMO case

The main idea of the proposed approach is to capture stability issues via
robust stability framework from Lecture 5:

- being far from critical point < increasing stability margins

- can be handled via H,, optimization framework



The idea of H, loop shaping

- Design the weights W; and W, to shape Ps = W,PW;,
which represents the open loop

- For the shaped plant P synthesize the controller K, maximizing
stability margin towards unstructured uncertainty (Hs optimization)

- Construct the controller K = W; K, W,

What is suspicious in this algorithm?



The idea of H, loop shaping (contd.)

- It is suspicious that we shape P, = W,PW,,
while the real open-loop transfer matrix is L, = PW; KW,

- The shape of L, depends on K, synthesized via the robust
stabilization procedure, and can be different from the shape of P;

- But there exists a specific uncertainty model which guarantees only
a mild deterioration in the shape of L, ...

Our main technical step will be to find a specific uncertainty model for
robust stabilization procedure, which

- results in a simple H,, optimization problem
having an easy to compute solution

- guarantees that the shapes of P; and L, are similar



Robust stability subject to Icf uncertainty

Lcf uncertainty model Pa = (M + Ap) "' (N + Ay)
with [|Alee = [[Ay Au]llc < 1/7 =0

The corresponding generalized plant is

0 I
G=| M7 =P
M-t —-P
Robust stability is equivalent to
| F(G, K)| H{ ] (I+PEK) M7 <~




Robust stability subject to Icf uncertainty (state-space)
Consider minimal realization of the plant
A|B
P =
1
(For simplicity, we assume that the plant is strictly proper)

Using the material from Lecture 2, it is easy to verify that

- o [A+LC|B L
[NM]_[ c 0 1

Q
~
__o__

Remark: Since D}, D11 = I, we have that
Yopt > ”IH =1 = Qopt = ]-/A/opt < 1.

aopt Will be referred to as “maximal stability radius”.



Robust stability subject to Icf uncertainty (state-space solution)

At this point we can apply solution of the standard H., problem.
Two Hamiltonian matrices are

A- L IC A LL"— BB
H= ¥l 72T
3450 C —(A- Loy
A+LO) —C*C
Jf
= 0 —(A+LO) |-

Note that in this special case Y = 0 (solution of ARE associated with J).

Theorem

Assuming D = 0, there exists a stabilizing controller K such that
PG, K)o <~

if and only if v > 1, H € dom(Ric) and X = Ric(H) > 0.

Remark: The result depends on the choice of L, i.e., on the choice of
coprime factors.



Normalized coprime factorization

We choose left coprime factorization to be “normalized”,
namely, to satisfy

N(s)N™(s)+M(s)M~(s) =T

or equivalently

[N 1) ][ ) | =

To construct normalized Icf we need to choose L = —Y C*,
where Y is the stabilizing solution of

AY +YA* -YC*CY +BB*=0

Proof: ...



Robust stability subject to normalized Icf uncertainty

Since M, N is the normalized Icf, multiplication by [ N M |

does not change the norm. Therefore,

1B (G K)o, ] (I + PE)N

Jaeemrie =[] 5

Joermr i ] =[] 5

~T ~R ~R

Does not depend on factorization
All closed-loop transfer function are equally penalized
- well balanced optimization

- does not tend to perform undesirable pole-zero cancellations



Explicit expression for 7o

Once normalized Icf is used, explicit expression for a,,: can be derived.

Theorem

The maximal stability radius for the robust stability problem with a
normalized Icf uncertainty is given by

Qo = 1= ||[ 51 K ][5 <1

where || - ||z stands for the Hankel norm.

Remark: Hankel norm is the maximal Hankel singular value, namely,

451, -

where P and @ are the controllability and observability Gramians,
respectively.



State-space formulae for the solution

The state-space solution can be derived in terms of the following equations
AY +YA* —YC*CY +BB* =0
QUA-YC'C)+(A-YC C)'Q+C'Cc=0 @

Theorem
Assume D = 0 and denote L = —Y C*, where Y > 0 is the stabilizing solution
of (1). Let @ be a solution of (2). Given v > 0, there exists stabilizing
controller satisfying || [%] (I + PK)"'M~'|| _ <~ iff
-~ —1/2 B
7> qep = (1= 1N M%) = (1= p(v@))™/

Moreover, a controller achieving v > ~vopt can be given by

A—BB*X —YC*C | —YC* 72 2 !




Relation to Gain and Phase Margins

It turns out that in the SISO case the stability radius a = || Fi (G, K)||=

be related to the classical stability margins.

Theorem
Let P be a SISO plant and K be a stabilizing controller. Then

1+«
1—a’

Y]

gain margin

phase margin > 2arcsin(a).

Proof. For SISO system at every w
|1+ P(jw)K(jw)|

a = =

BB

1+ PUw)K(w)|  _ |1+ P(jw)K(jw)|

H{ K ]H I[1 P VIFIPGIPVIHIEGL)P

can



Relation to Gain and Phase Margins

So at frequencies where k := —PK € R™ we have
|1 — k]
a <
VA +[PPR)(1+k2/[P[?)
|1 — K| 1=k

Vminp{(1+ P21 + k2/[PP)}  [1+F|

from which the gain margin result follows.

Similarly at frequencies where PK = —¢’
[1—¢
@ 2 2) —
VA +IPR)1+1/PP)
1 _
Vminp{(1+[P])(1+1/[P[*)}
_ 2[sin(6/2)]
N 2

which implies the phase margin result.

(contd.)



Intermediate summary

We saw that the problem of robust stability subject to normalized Icf
uncertainty has many appealing properties:

- maximization of stability radius results in well balanced optimization
- admits explicit solution (no iterations needed)

- related with classical stability margins

This is the time to go back to our original problem:

Are there guarantees that the shapes of Ps and L, are similar?



Degradation at the low frequencies

At the low frequencies we need large o(Lo) and o(L;). It is easy to verify that

(L) = a(PW; K W,) = a(W, ' PyKW,) > a(Ps)a(Ks) n(;Vo)’
a(Li) = g(WiKsWoP) = Q(WiKspswi_l) z o(K.)e(Fs) H(;Vi)7

where k(M) = (M) /a(M) is the conditional number.

Small g(K) might cause problem, yet, this can not happen
if o(Ps) is large and « is not small.

Theorem
Any K, guaranteeing stability radius o = 1/~ satisfies

a(Ps) =72 -1 . 7
(Ks) > o Ta(P 1 if o(Ps)>+/~v?—1.

Corollary: If g(Ps) >> /72 — 1 then g(K;) > ——

N2-1




Degradation at the high frequencies

At the high frequencies we need small ¢(L,) and o(L;). It is easy to verify that

5(Lo) = 6(PW; K W,) = 6(W, ' PsKW,) < 6(Ps)a(Ks)k(Wo),
(L) = 6(WiKsW,P) = 6(Wi K. PsW; ') < 5(K)a(Ps)s(W5),

Large 6(Ks) might cause problem, yet, this can not happen
if 5(Ps) is small and « is not small.

Theorem
Any K guaranteeing stability radius o = 1/~ satisfies

Y2 — +U . 1
(K 1 WO(P) if 7(Ps) < 772 =7

Corollary: If 5(Ps) << 1/4/7? — 1 then 7(K,) < /72 — 1.



Interpretation for maximal stability radius o

If aopt is not small, i.e., is not far from 1, then
- the shapes of Ps and L, are close at the low and at the high frequencies

- the proposed open loop shape can be achieved without loosing stability

The fact that aope << 1 indicates that the shape of P; is difficult to achieve
and the constraints should be relaxed.



H loop shaping procedure

@ Choose W; and W, to shape Ps = W,PW,.
There should be no unstable pole-zero cancellations in Ps.
At this stage internal stability is not taken into account.

@® Compute normalized Icf for Ps and aopt = \/1 =l M N ]Hi{ If
Qopt << 1 relax loop shaping requirements by adjusting the weights

© If aope is acceptable select v > 1/aop: and synthesize stabilizing
controller K that satisfies

H { " } (I+PK)"'NI7"

<7.

[e'e]

@ Construct the final controller K = W; K, W,.



Closed loop transfer matrices

Denote 7; = E(Wi), o, = Q(Wi), Ki = K(WZ)

Theorem: Let P be the nominal plant and let K = W1 Koo W2 be the
controller designed by loop shaping. Then if bp, k., > 1/~ then

F(K(I+PK)™") < ~&(M, )6152
S(I+PK)™) < min{yo(M,)nz, 1495(No)na},
F(K(I+PK) 'P) < min{ya(Ns)k1,1+y7(Ms)k1},
(I + PK)"'P) < —Vg(ivs),
a((I+ KP)fl) < min{l—i—’yE(N )m,’yE(M VK1l
E(P(I+KP)_1K) < min{l—l—’yE(]\Zf Vk2,vo(Ns)ka}

where



What did we study today?

- Normalized coprime factorization

- Robust stability subject to normalized lcf disturbance

- Solution convenient for computation
- Explicit formula for maximal stability radius

- H*®° loop shaping procedure

- Bounds on the degradation of open loop due to the
introduction of stabilizing controller
- Interpretation of the maximal stability radius



