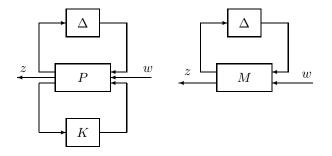
Structured singular value and μ -synthesis

Robust Control Course

Department of Automatic Control, LTH

Autumn 2011

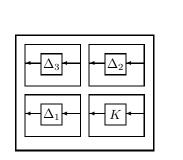
LFT and General Framework

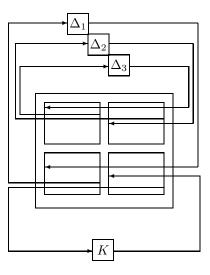


 $z = \mathcal{F}_u(\mathcal{F}_l(P, K), \Delta)w = \mathcal{F}_u(M, \Delta)w.$

- Last week we considered the case with full-block uncertainty Δ
- Formulation with block-diagonal uncertainty may be useful
 - in problems with multiple uncertainty sources (obvious)
 - to include robust performance in formulation
- (clarified later)

Pulling out Uncertainties





Structured Uncertainty

- The pulled out uncertainty has a block-diagonal structure composed of primitive uncertain blocks.
- Every primitive block can be
 - unstructured matrix uncertainty $\Delta_i \in RH_\infty$
 - scalar uncertainties $\delta_i \in RH_\infty$ multiplied by identity matrices
- Thus, we shall assume that

$$\Delta(s) = \operatorname{diag} \left\{ \delta_1(s) I_{r_1}, \dots, \delta_K(s) I_{r_K}, \Delta_1(s), \dots, \Delta_L(s) \right\},$$

with $\|\delta_k\|_{\infty} \leq 1$ and $\|\Delta_l\|_{\infty} \leq 1$.

Remark: Uncertainty blocks $\delta_i(s)I_{r_i}$ sometimes stand for real parameter uncertainties covered (conservatively) with dynamic RH_{∞} uncertainties

For the case with structured uncertainty:

- By Small Gain Theorem the condition $||M_{11}||_{\infty} < 1$ is sufficient for robust stability but *not necessary* for it. (Because the test ignores the known block structure.)
- Test for each uncertainty individually can be arbitrarily optimistic because it ignores interaction between the blocks.

<u>Conclusion</u>: We need to develop a new tool to deal with structured uncertainty.

Small gain theorem

- The small gain theorem says that:

$$\begin{split} (I - M\Delta)^{-1} \in RH_{\infty}, \; \forall \Delta \in \frac{1}{\gamma} \mathcal{B}RH_{\infty} \\ \Leftrightarrow \; \|M\|_{\infty} = \sup_{w} \bar{\sigma}(M(j\omega)) < \gamma \end{split}$$

(reminder)

(Thus, we can refer $||M||_{\infty}^{-1} = 1/\gamma$ as the stability margin.)

- So if there exists $\Delta \in RH_{\infty}$ such that $(I M\Delta)^{-1} \notin RH_{\infty}$, then $1/\gamma < \|\Delta\|$.
- Naturally we can consider the stability margin $\|M\|_{\infty}^{-1}$ as

$$\|M\|_{\infty}^{-1} = \inf\{\|\Delta\|_{\infty} : (I - M\Delta)^{-1} \notin RH_{\infty}, \ \Delta \in RH_{\infty}\}$$

- Recalling the proof of the small gain theorem, we can formulate similar statements for each frequency ... (see the next slide)

Singular value - revisited

- Given $M \in \mathbb{C}^{p \times q}$, the following statement holds:

$$\det(I - M\Delta) \neq 0, \ \forall \Delta \in \alpha \mathcal{B}\mathbb{C}^{q \times p} \quad \Leftrightarrow \quad \bar{\sigma}(M) < 1/\alpha$$

(In these notations the "stability margin" is $\alpha \leftrightarrow 1/\gamma$)

- So if there exists Δ such that $\det(I M\Delta) = 0$, then $\alpha < \|\Delta\|$.
- As before, the "stability margin" can be viewed as

$$\bar{\sigma}(M)^{-1} = \inf\{\|\Delta\| : \det(I - M\Delta) = 0, \ \Delta \in \mathbb{C}^{q \times p}\}$$

- This gives an interesting perspective on the singular value. In fact, the singular value can be characterized as

$$\bar{\sigma}(M) = \frac{1}{\inf\{\|\Delta\| : \det(I - M\Delta) = 0, \ \Delta \in \mathbb{C}^{q \times p}\}}$$

Structured singular value

Now consider the set of structured matrices

$$\boldsymbol{\Delta} = \{ \mathsf{diag}\left[\delta_1 I_{r_1}, \dots, \delta_K I_{r_K}, \Delta_1, \dots, \Delta_L\right] \mid \delta_k \in C, \ \Delta_l \in C^{m_l \times m_l} \}$$

Definition: Given a matrix $M \in C^{p \times q}$ the structured singular value $\mu_{\Delta}(M)$ is defined as

$$\mu_{\Delta}(M) = \frac{1}{\min\{\|\Delta\| : \det(I - M\Delta) = 0, \ \Delta \in \Delta\}}.$$

If $\det(I - M\Delta) \neq 0$ for all $\Delta \in \mathbf{\Delta}$ then $\mu_{\mathbf{\Delta}}(M) := 0$.

Elementary properties:

-
$$\mathbf{\Delta} = C^{q \times p} \Rightarrow \ \mu_{\mathbf{\Delta}}(M) = \bar{\sigma}(M).$$

$$- \Delta = \{ \delta I : \delta \in C \} \Rightarrow \ \mu_{\Delta}(M) = \rho(M).$$

- In general, $C \cdot I \subset \mathbf{\Delta} \subset C^{q \times p}$ so $\rho(M) \le \mu_{\mathbf{\Delta}}(M) \le \bar{\sigma}(M)$.

How good are the bounds?

Let $\Delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix}.$ (1) For $M = \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix}$ with $\beta > 0$ we have $\rho(M) = 0, \quad ||M|| = \beta, \quad \mu_{\Delta}(M) = 0.$ (2) For $M = \begin{vmatrix} -1/2 & 1/2 \\ -1/2 & 1/2 \end{vmatrix}$ we have $\rho(M) = 0, \quad ||M|| = 1.$

Since $det(I - M\Delta) = 1 + (\delta_1 - \delta_2)/2$ we get $\mu_{\Delta}(M) = 1$.

Thus, both bounds are bad unless $\rho \approx \bar{\sigma}$.

Can we reduce the conservatism?

Let us try to find transformations which do not affect $\mu_{\Delta}(M)$ but change $\rho(M)$ and $\bar{\sigma}(M).$

Define two sets

$$\begin{aligned} \mathcal{U} &= \{ U \in \mathbf{\Delta} : UU^* = I \}, \\ \mathcal{D} &= \{ \mathsf{diag}[D_1, \dots, D_K, d_1 I_{m_1}, \dots, d_{L-1} I_{m_{L-1}}, I_{m_L}] : \\ D_k \in C^{r_k \times r_k}, D_k = D_k^* > 0, d_l \in R, d_l > 0 \}. \end{aligned}$$

Note that for any $\Delta \in \mathbf{\Delta}$, $U \in \mathcal{U}$ and $D \in \mathcal{D}$ it holds

- $U^* \in \mathcal{U}, U\Delta \in \Delta, \Delta U \in \Delta$ (property of the set Δ).

-
$$||U\Delta|| = ||\Delta U|| = ||\Delta||$$
 (since $UU^* = I$).

- $D\Delta = \Delta D$ (property of the set \mathcal{D}).

Invariant transformation

Theorem

For all $U \in \mathcal{U}$ and $D \in \mathcal{D}$ 1) $\mu_{\Delta}(M) = \mu_{\Delta}(UM) = \mu_{\Delta}(MU)$. 2) $\mu_{\Delta}(M) = \mu_{\Delta}(DMD^{-1})$.

Proof:

1) Since for each $U \in \mathcal{U}$

$$det(I - M\Delta) = 0 \quad \Leftrightarrow \quad det(I - MUU^*\Delta) = 0$$
$$\Delta \in \mathbf{\Delta} \quad \Leftrightarrow \quad U^*\Delta \in \mathbf{\Delta}$$

we get $\mu_{\Delta}(M) = \mu_{\Delta}(MU).$

2) For all $D \in \mathcal{D}$

 $\det(I - M\Delta) = \det(I - MD^{-1}\Delta D) = \det(I - DMD^{-1}\Delta)$

since Δ and D commute. Therefore $\mu_{\Delta}(M) = \mu_{\Delta}(DMD^{-1})$.

Improving the bounds

At this point we can tighten the bounds as follows.

$$\sup_{U \in \mathcal{U}} \rho(UM) \le \mu_{\Delta}(M) \le \inf_{D \in \mathcal{D}} \|DMD^{-1}\|$$

Theorem:

$$\sup_{U \in \mathcal{U}} \rho(UM) = \mu_{\Delta}(M).$$

Theorem:

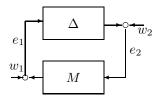
If $2K + L \leq 3$ then

$$\mu_{\Delta}(M) = \inf_{D \in \mathcal{D}} \|DMD^{-1}\|.$$

Remarks:

- In general the quantity $\rho(UM)$ has many local maxima and the local search cannot guarantee to obtain $\mu(M)$.
- Computationally there is a slightly different formulation of the lower bound by Packard and Doyle which gives rise to a power algorithm. It usually works well but has no prove of convergence.
- The upper bound can be computed by convex optimization, but it is not always equal to $\mu(M)$ if 2K + L > 3.
- It is the upper bound that is the cornerstone of μ synthesis, since it gives a sufficient condition for robust stability/performance.
- In Matlab use function **mu(M,blk)** to calculate the bounds of the structured singular value. See page 194 in the course book for more details.

Structured small gain theorem



Introduce the set

$$\mathcal{T}(\mathbf{\Delta}) = \{ \Delta \in RH_\infty \ : \ \Delta(s) \in \mathbf{\Delta} \text{ for } s \text{ in RHP} \}.$$

The following result can be formulated.

Theorem

Let $M \in RH_{\infty}$. The closed-loop system (M, Δ) is well-posed and internally stable for all $\Delta \in \mathcal{T}(\mathbf{\Delta})$ with $\|\Delta\|_{\infty} < 1$ if and only if

 $\sup_{\omega \in R} \mu_{\Delta}(M(j\omega)) \le 1.$

The robust stability condition is

$$(I - M\Delta)^{-1} \in RH_{\infty}, \ \forall \Delta \in \mathcal{T}(\Delta), \ \|\Delta\|_{\infty} < 1.$$

"⇐" By definition of structured singular value,

$$\det(I - M(s)\Delta(s)) \neq 0, \quad \forall s = iw.$$

However, we need to show this for all \boldsymbol{s} in RHP. To this end, it is enough to notice that

- zeros of $\det(I-\alpha M\Delta)$ move continuously with respect to α
- for $\alpha < 1/\|M\|_\infty$, $\det(I \alpha M \Delta)$ has no RHP zeros
- $\forall \alpha \leq 1$, $\det(I \alpha M \Delta)$ has no imaginary zeros

"⇒" If $\sup_{\omega \in R} \mu_{\Delta}(M(j\omega)) > 1$ then by definition of μ there exist ω_0 and Δ_0 with $\|\Delta_0\| < 1$ such that the matrix $\det(I - M(j\omega_0)\Delta_0) = 0$. Next, one can apply the same interpolation argument as in the Small Gain Theorem. **Remark**: Unlikely the unstructured Small Gain Theorem the robust stability for all $\Delta \in \mathcal{T}(\Delta)$ with $\|\Delta\|_{\infty} \leq 1$ does not imply that

 $\sup_{\omega \in R} \mu_{\Delta}(M(j\omega)) < 1.$

It might be equal to 1. See example in [Zhou,p. 201].

Remark: The structured small gain theorem provides a tool for the analysis of robust stability subject to structured uncertainties.

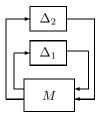
Another useful result

Let $M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$ be a complex matrix and suppose that Δ_1 and Δ_2 are two defined structures which are compatible in size with M_{11} and M_{22} correspondingly.

Introduce a third structure as $\mathbf{\Delta} = \begin{bmatrix} \mathbf{\Delta}_1 & 0 \\ 0 & \mathbf{\Delta}_2 \end{bmatrix}$.

$\begin{array}{ll} \text{Theorem} \\ 1) \ \mu_{\mathbf{\Delta}}(M) < 1 & \Leftrightarrow & \left\{ \mu_{\mathbf{\Delta}_{1}}(M_{11}) < 1, & \sup_{\substack{\Delta_{1} \in \mathbf{\Delta}_{1} \\ \|\Delta_{1}\| \leq 1}} \mu_{\mathbf{\Delta}_{2}}(\mathcal{F}_{u}(M, \Delta_{1})) < 1 \right\} \\ 2) \ \mu_{\mathbf{\Delta}}(M) \leq 1 & \Leftrightarrow & \left\{ \mu_{\mathbf{\Delta}_{1}}(M_{11}) \leq 1, & \sup_{\substack{\Delta_{1} \in \mathbf{\Delta}_{1} \\ \|\Delta_{1}\| < 1}} \mu_{\mathbf{\Delta}_{2}}(\mathcal{F}_{u}(M, \Delta_{1})) \leq 1 \right\} \end{array}$

Another useful result - proof

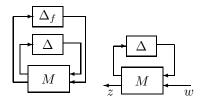


Proof: Prove only 1).

"
we "Let $\|\Delta_i\| \leq 1$. By Schur complement $\det(I - M\Delta) = \det \begin{bmatrix} I - M_{11}\Delta_1 & -M_{12}\Delta_2 \\ -M_{21}\Delta_1 & I - M_{22}\Delta_2 \end{bmatrix} = \\
= \det(I - M_{11}\Delta_1)\det(I - \mathcal{F}_u(M, \Delta_1)\Delta_2) \neq 0.$

"⇒" Basically the same identity plus (from definition of μ) $\mu_{\Delta}(M) \ge \max\{\mu_{\Delta_1}(M_{11}), \ \mu_{\Delta_2}(M_{22})\}$

Structured robust performance



Define an augmented block structure, where $p_2 \times q_2$ is the size of M_{22} .

$$\mathbf{\Delta}_P = \left[\begin{array}{cc} \mathbf{\Delta} & \mathbf{0} \\ \mathbf{0} & C^{q_2 \times p_2} \end{array} \right]$$

Theorem

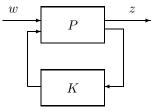
For all $\Delta \in \mathcal{T}(\mathbf{\Delta})$ with $\|\Delta\|_{\infty} < 1/\gamma$ the closed loop is well posed, internally stable and $\|\mathcal{F}_u(M, \Delta)\|_{\infty} \leq \gamma$ if and only if

 $\sup_{\omega \in R} \mu_{\Delta_P}(M(j\omega)) \le \gamma.$

 μ synthesis via D-K iterations

The problem is to solve

$$\min_{K-\text{stab}} \|\mathcal{F}_l(P,K)\|_{\mu}.$$



Approximation for the upper bound

$$\min_{K-\text{stab}} \left(\inf_{D, D^{-1} \in H_{\infty}} \| D\mathcal{F}_{l}(P, K) D^{-1} \|_{\infty} \right)$$

under the condition $D(s)\Delta(s) = \Delta(s)D(s)$.

We try to solve this problem via D - K iterations:

Step 1: Given D find K. Step 2: Given K find D.

Remarks:

- Step 1 is the standard H_∞ optimization.
- Step 2 can be reduced to a convex optimization.
- No global convergence is guaranteed.
- Works sometimes in practice.

- Pulling out uncertainties leads to a diagonal structure
- Structured singular value μ is natural but is difficult to find
- Useful bounds of μ can be calculated
- Structured version of the small gain theorem
- Structured robust performance can be easily formulated
- Heuristic D K iterations as approach to μ synthesis.