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1 CasADi structure

The backbone of CasADi is centered around some fundamental classes:

• SX – scalar symbolic type

• SXMatrix – sparse matrix with elements of type SX

• DMatrix – same as SXMatrix but with elements of floating point type

• FX and derived classes – functions

• MX – matrix symbolic type

This session covers the first four classes in the list. The MX class will be presented in separate
session tomorrow.

1.1 SX and SXMatrix

The SX type is used to represent symbolic expressions made up by a sequence of unary and
binary operations. It uses a syntax similar to a numeric type such as float in Python (which
corresponds to double in C/C++), but instead of calculating the expressions numerically, the
SX will build up an expression. The type overloads most common operations and can also be
used instead of Python’s built-in types in container classes such as numpy.array.

Though it is possible and somtimes benificial, we shall not work with the SX type directly in
this tutorial. Instead we shall work with a sparse matrix type called SXMatrix, whose elements
are SX instances. SXMatrix uses an everything-is-a-matrix type syntax that should be familiar
to Matlab users, which means that scalars can be represented as 1-by-1 matrices and vectors
as n-by-1 matrices. To store its element, it uses a general sparse matrix format comparible to
that used for sparse matrices in Matlab1.

To see how it works in practice, start an interactive Python shell (e.g. by typing ipython

from a Linux terminal or inside a integrated development environment such as Spyder) and
import CasADi using the command:

from casadi import *

1To be more precise, the storage format used is compressed row storage
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Now create the variable x using the syntax (cf. the function sym in Matlab’s Symbolic
Toolbox):

x = ssym("x")

Note that the string passed is only the display name, not the identifier. Multiple variables can
have the same name, but still be different. You can also create vectors or matrices of variables
using by supplying additional arguments to ssym:

y = ssym("y",5) # A 5-by-1 matrix, i.e. a vector, with symbolic variables

Z = ssym("Z",4,2) # A 4-by-2 matrix with symbolic variables

Note that ssym is a function which returns an SXMatrix instance. When variables have been
declared, expressions can now be formed in an intuitive way:

f = x**2 + 10

f = sqrt(f)

print "f = ", f

You can also create SXMatrix instances without any symbolic variables:

B1 = SXMatrix.zeros(4,5) # a dense 4-by-5 empty matrix with all zeros

B2 = SXMatrix.sparse(4,5) # a sparse 4-by-5 empty matrix with all zeros

B3 = SXMatrix.ones(4,5) # a dense 4-by-5 matrix filled with ones

B4 = SXMatrix.eye(4) # a sparse 4-by-4 matrix with ones on the diagonal

Note the difference between a sparse matrix with structural zeros and a dense matrix with
actual zeros. When printing an expression with structural zeros, these will be represented as
00 to distinguish them from actual zeros 0.

Elements are accessed and set using a bracket syntax, which also updates the sparsity
pattern. Note that in C++ and Python (and thus also in CasADi) indices start with zero:

print B1[0,0] # print elements [0,0] (Python is zero-based!)

print B2[-1,-1] # print the last element of the last row

print B3[:,2] # print all elements in the 2nd column

B4[2:4,1]=[7,3] # set [2,1] to 7 and [3,1] to 3

Remember to pass two arguments if you wish to access a matrix entry. If you call the same
function using one index, is interpreted as accesssing the (structural) nonzeros of the matrix:

B4[:] = 5 # set all nonzeros to 5

print B4[6] # error: there are only six nonzeros!

There is a growing set of operations that can be performed with the SXMatrix, including:

• Calculus: E.g. Jx = jacobian(f,x): Jacobian of expression f with respect to expression
x, see also the FX member function jacobian below.

• Algebra: E.g. x = solve(A,b): Can be used to give a symbolic expression for x = A−1 b.

It is typically uncomplicated to add new such functions whenever they appear in applications.
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1.2 DMatrix

DMatrix is very similar to SXMatrix (in fact, they are just two template instantiations of the
same C++ class CasADi::Matrix< T >), but with the difference that the nonzero elements are
numerical values and not SX expressions. Except for the function ssym above (which

DMatrix is mainly used for storing matrices in CasADi and as inputs and outputs of func-
tions. It is not intended to be used for computationally intensive calculations. For this purpose,
use numpy or scipy matrices:

C = 4*DMatrix.ones(2,3)

C[:,2] = 5

C_numpy = NP.array(C)

import scipy as SP

C_scipy = SP.sparse.csr_matrix(C)

More usage examples for SX can be found in the tutorials at www.casadi.org. For docu-
mentation of particular functions of this class (and others), find the “C++ API docs” on the
website and search for information about CasADi::Matrix< T >.

1.3 FX and derived classes

CasADi contains a number of functions that all derive from the FX base class. This includes
functions that are defined by a symbolic expression, ODE/DAE integrators, QP solvers, NLP
solvers etc.

The usage skeleton of all these functions are:

# Call the constructor

f = ClassName(arguments)

# Set options

f.setOption("option_name",option_value)

# Initialize the function

f.init()

# Set inputs, forward and adjoint derivative seeds

f.setInput(value,input_index)

f.setFwdSeed(value,input_index)

f.setAdjSeed(value,output_index)

# Evaluate

f.evaluate(num_fwd_sensitivities, num_adj_sensitivities)

# Get outputs, forward and adjoint derivative sensitivities

f.getOutput(value,output_index)

f.getFwdSens(value,output_index)

f.getAdjSens(value,input_index)

As an alternative to calling getOutput, setFwdSeed etc., you can also directly access the
internal matrices (which are of type DMatrix). This can decrease overhead and shorten the
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code, but must be used with caution, since changing the structure of these matrices can cause
CasADi to crash.

print "output is ", f.output()

print "forward seed is ", f.fwdSeed()

Note that all functions are multiple (sparse, matrix-valued) input, multiple (sparse, matrix-
valued) output.

One of the FX derived classes is SXFunction, which defines a function given a symbolic
expression. Its constructor is:

f = SXFunction(list_of_inputs,list_of_outputs)

2 Automatic differentiation

The most important functionality of CasADi is automatic differentiation or AD. CasADi con-
tains a total of 8 different AD algorithms that are suitable in different situations.

Given a function RN → RM :
y = f(x) (1)

forward directional derivatives (Jacobian-times-vector products) can be calculated by giving
a seed in that direction:

yfsens =
∂f

∂x
xfseed (2)

Jacobian-transposed-times-vector products can be calculated in a similar way, using adjoint
mode AD:

xasens =

(
∂f

∂x

)T

yaseed (3)

In CasADi, forward/adjoint seeds are set together with the function inputs and forward/adjoint
sensitivities (or directional derivatives) are collected together with the outputs. Multiple forward
and/or adjoint derivative directions can be handled simultaneously, that is you can simultane-
ously multiply the Jacobian from the left or right with multiple vectors. The number of vectors
are passed as arguemnts to f.evaluate(num fwd sensitivities, num adj sensitivities).
In this turorial we shall restrict ourselves to at most one forward and one adjoint derivative
direction, meaning that num fwd sensitivities and num adj sensitivities will either be 0
or 1.

CasADi is also able to generate complete, sparse Jacobians efficiently by calling the jacobian
member function. The algorithm it will use for this depends on the particular class2.

Jf = f.jacobian(0,0) # function corresponding to the jacobian

# of the 0-th output w.r.t. the 0-th input

3 Exercises

1.1 A simple model for the flight of a rocket is the following differential equation:

ḣ = v
v̇ = (u− α v2)/m
ṁ = −β u2

(4)

2For SXFunction, the default algorithm is to first determine the sparsity pattern, then use a graph coloring
algorithm to determine which rows or columns can be calculated simultaneously, performing the AD algorithm
symbolically and then assemble a new SXFunction corresponding the the Jacobian
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where h is height, v is velocity, m is mass and u is the thrust. α is the friction coefficient
taken to be 0.05 and β is the fuel consumption rate, here taken to be 0.1. Create an
SXFunction f which calculates ẋ given x and u where x := [h, v,m]T, i.e. ẋ = f(x, u).
Evaluate the function numerically with x = [0.2, 0.3, 1.0]T and u = 0.4. Check the results.

1.2 For the same numerical values of x and u, calculate forward sensitivities using the forward
seeds xfseed = [0, 1, 0]T, ufseed = 0.0. How do you interpret the result?

1.3 For the same numerical values of x and u, calculate adjoint sensitivities using the adjoint
seeds ẋaseed = [0, 0, 1]T. How do you interpret the result?

1.4 Create a function Jx = ∂f
∂x (x, u) using the syntax f.jacobian() where f is the ODE right

hand side function. Evaluate the function with the above values and compare the results
with the already calculated directional derivatives. Do they agree?

1.5 Get a symbolic expression for ∂f
∂x and ∂f

∂u using the syntax: J = jacobian(0,0) and J =

jacobian(1,0). How many nonzero entries do the Jacobians contain?
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