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1 ODE/DAE formulation

The integrators interfaced with CasADi assumes a DAE residual function of the fully implicit
form:

f(t, x, p, ẋ) = 0 (1)

Solvers for ordinary differential equations will make the additional assumption that the
structure of the function is:

fode(t, x, p)− ẋ = 0 (2)

the explicit equation for ẋ can thus be retrieved by simply evaluating the DAE function with
ẋ = 0.

It is important that the arguments of the function uses the order above, and for this reason,
we strongly recommend users to work with a set of constants defining the required input and out-
put schemes of the function. For the DAE residual function, these constants are DAE NUM IN=4,
DAE T=0, DAE Y=1, DAE P=2 and DAE YDOT=3 for the inputs and DAE NUM OUT=1 and DAE RES=0

for the outputs.
An integrator in CasADi is a function that take the state at the initial time, guesses for the

algebraic states and state derivatives (only important for DAEs) and evaluates the state vector
at the final time. The time horizon is assumed to be fixed1 and can be set with the option:

integrator.setOption("tf",integration_end_time)

2 Sundials integrators

The Sundials suite contains the two popular integrators CVodes and IDAS for ODEs and DAEs
respectively. These two integrators supports forward and adjoint sensitivities and when used
via CasADi’s Sundials interface, CasADi will automatically formulate the Jacobian information,
which is needed by the backward differentiation formula (BDF) that CVodes and IDAS use.
Also automatically formulated will be the forward and adjoint sensitivitiy equations. This
means that the only information that the user needs to provide is the DAE residual function:

integrator = CVodesIntegrator(f) or integrator = IdasIntegrator(f)

1for problems with free end time, you can always scale time by introducing an extra parameter and substitute
t for a dimensionless time variable that goes from 0 to 1
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for CVodes and IDAS respectively.
For a list of options for the integrators, as well as the input and output schemes of this

function, check the documentation directly from Python:

CVodesIntegrator?

or by consulting the online C++ API docs on the website.

3 Sensitivity analysis

From evaluation point of view, an integrator behaves just like the SXFunction introduced in
the previous session. You set inputs, forward/adjoint seeds, evaluate and obtain the outputs
and forward/adjoint sensitivities.

4 The Simulator class

As already mentioned, integrators in CasADi are functions that calculates the state at the final
time. Often, however, a user is interested in obtaining the solution at multiple time points.
This can often be done more efficiently than by repeatedly calling integrator.evaluate().
The easiest way to use this functionality is to use the Simulator class.

A Simulator can be created using the syntax:

# Import numpy

import numpy as NP

# Allocate an integrator instance

integrator = ...

integrator.setOption("...",...)

# Choose a time grid

tgrid = NP.linspace(0,end_time,num_time_steps)

# Create a simulator

simulator = Simulator(integrator, time_grid)

A Simulator can be used just like an integrator, and its input scheme is the same. Its
output is now matrix valued, with the the columns corresponding to different time points. The
class can also be used to evaluate a particular function of the state at a set of time points. See
the API documentation for more information.

5 Exercises

2.1 Rewrite the rocket ODE from the previous exercise in the fully implicit form required by
CasADi’s integrators. Create a CVodesIntegrator instance and integrate from t = 0 to
t = 10.0 with u = 1 and x(0) = [0, 0, 1]T. Calculate, using forward sensitivity analysis how
the final state depends on the control. Also calculate, using adjoint sensitivity analysis
how the m at the final time depends on the initial state and the control.

2.2 Integrate again by creating a Simulator, and stop att 100 intermediate times. Visualize
the trajectory using a matplotlib plot. Note that the Simulator class currently does
not support adjoint sensitivitiy analysis.
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2.3 Extra: Add a quadrature state defined by the equation q̇ = ‖u− 3 sin(t)‖22 without aug-
menting the ODE. Check CVodes documentation. What are the advantages/disadvantages
of using quadrature states in general?

2.4 Extra: A Runge-Kutta 4 step can be written:

k1 = f(xk, uk) (3)

k2 = f(xk +
1

2
∆t k1, uk) (4)

k3 = f(xk +
1

2
∆t k2, uk) (5)

k4 = f(xk + ∆t k3, uk) (6)

xk+1 = xk +
1

6
∆t (k1 + 2 k2 + 2 k3 + k4) (7)

Use this formula to create an expression for this state at the final time using 100 RK4 steps.
To evaluate your ODE/DAE function (which is of type SXFunction) symbolically, you
can use the function eval(). Create a new SXFunction instance with the same input and
output scheme as your CVodes integrator. Then repeat exercise 2.1 using this integrator
and and compare the results that you got then.

3


