
Ph.D. course on Network Dynamics

Homework 3

To be discussed on Wednesday, November 30, 2011

Exercise 1. Read Mitzenmacher’s survey on power laws [1], available at
http://www.eecs.harvard.edu/ michaelm/CS223/powerlaw.pdf.

Exercise 2 (Stars in preferential attachment). This exercise was suggest by
Zayide at the end of last class. A start graph is a tree in which all but one
nodes are leaves (i.e., have degree 1). Consider the Albert-Barabasi prefer-
ential attachment model studied in class with m = 1. Prove that Gt is a star
with probability 21−t, for all t ≥ 1.

Exercise 3. Exercise 14.4 from [2] (this book, as well as all the other I
ordered for the course can be borrowed from the Automatic Control Depart-
ment’s library).

Exercise 4. The following model does not involve a graph, but can be stud-
ied using the same mean-field method as for the Albert-Barabasi preferential
attachment model.

A famous surrealist author is known to compose text as follows. She starts
with a random word. Suppose that t words (not necessarily different) have
already been written. The next word is chosen as follows:

- with probability α, it is a new word; - with probability 1−α, she chooses
some j uniformly at random from the set of past instants {1, . . . , t − 1} and
copies the j-th word that she has alerady written. Let ni(t) be the expected
number of distinct words that appear exactly i times, after the first t words
have been written.

1. Write down a recursion (in t) for the variables ni(t).
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2. Assume (or, better, prove) that ni(t)/t converges to some βi ≥ 0 for all
i ≥ 1. Find equations that relate the βi.

3. Show that βi/βi+1 converges to 1 as i grows large, and that the βi’s
correspond to a power law.

Exercise 5 (Hoeffding-Azuma inequality). Let M0, M1, . . . , Mt be a martin-
gale such that

|Mi − Mi−1| ≤ ci , ∀i = 1, . . . , t . (1)

1. prove that, for c ≥ 0

ex ≤
sinh(c)

c
x + cosh(c) , ∀x ∈ [−c, c] ;

(hint: use convexity)

2. prove that, for c ≥ 0

cosh(z) ≤ exp(z2/2) , ∀z ∈ R ;

(hint: use Taylor expansions)

3. prove that, for all θ ≥ 0,

E[exp(θ(Mi − Mi−1))|M0, . . . , Mi − 1] ≤ exp(θ2c2

i
/2) ;

(hint: use the martingale property, (1), and the previous two points)

4. prove that, for all θ ≥ 0, and ε ≥ 0,

P(Mt − M0 ≥ ε) ≤ exp(−θε + θ2
∑

1≤i≤t

c2

i
/2) ;

5. conclude that

P(Mt − M0 ≥ ε) ≤ exp(−ε2/(2
∑

1≤i≤t

c2

i
)) , ∀ε ≥ 0 ,

which is the Hoeffding-Azuma inequality.
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Exercise 6 (Hoeffding-Azuma inequality vs Chernoff bound). Observe that
the Hoeffding-Azuma inequality applies to martingales with bounded incre-
ments, whereas the Chernoff bound applies to sequences of i.i.d. random
variables, not necessarily with bounded support. Therefore, the ranges of
applicability of the two are not comparable. Nevertheless, we can compare
them in the following simple case.

Let X1, X2, . . . , Xn i.i.d. random variables with distribution Bernoulli(p).
Is the strongest upper bound on P(

∑

n

i=1
Xi ≥ (p + ε)n) provided by the

Hoeffding-Azuma inequality or the Chernoff bound? Compare both also with
Bernstein’s inequality

P

(

∑

1≤i≤n

Xi ≥ (p + ε)n

)

≤ exp

(

−n
ε2

2(1 − p)(p + ε/3)

)

.
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