
Ph.D. course on Network Dynamics

Homework 2

To be discussed on Tuesday, November 23, 2011

Exercise 1. Have a look at the notes on on the Erdös-Rényi branching pro-
cess approximation and connectivity phase transition that are posted on the
course webpage. Try to fill in the gaps of the proofs. Please, note there might
be a few typos (e.g., the is a missing + before the last two summations in the
big displayed equation at the top of page 2); please be patient until I find the
.tex file.

The following exercises deal with the fixed degree distribution random
graphs defined via the configuration model. Let us recall a bit of notation.
We start with a (node-perspective) degree distribution {pk : k ≥ 0}, and let
µ :=

∑

k kpk be its first moment, which will always be assumed finite. We
also let

qk :=
1

µ
(k + 1)pk+1 , k ≥ 0 , ν :=

∑

k

qkk =
1

µ

∑

k

pkk(k − 1) ,

be the edge-perspective degree distribution and its first moment.

Exercise 2. Let p0 = 0 and, for k ≥ 1, pk = Cβk
−β with β > 1, and

Cβ :=
(
∑

k≥1
k−β

)−1
.

(a) prove that µ is finite if and only if β > 2, while ν is finite if and only if
β > 3;

Let pk = e−λλk/k!, for k ≥ 0;

(b) prove that qk = pk, for k ≥ 0.
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Conversely, assume that qk = pk, for k ≥ 0, and

(c) prove that pk = e−λλk/k!, for k ≥ 0, where λ =
∑

k kpk = µ.

I.e., the Poisson distribution is the unique distribution which is the same
from node and edge perspective.

Let us briefly recall the definition of the configuration model, which was
somehow misrepresented in the first attempt in class. For a given node
size n ≥ 1, we generate n i.i.d. random variables, d1, d2, . . . , dn, such that
P(dv = k) = pk for all v = 1, . . . , n, and k ≥ 0, we define ∆ :=

∑n

v=1
dv,

and we condition on the event {∆ is even}. Finally, we generate the graph
with node set V = {1, 2, . . . , n} by matching the ∆ ‘half-edges’ attached to
the n nodes uniformly at random. I.e., we iteratively form edges by first
choosing a pair of half-edges uniformly at random from the

(

∆

2

)

possibilities
and matching them; then choosing another pair of half-edges uniformly at
random from the remaining

(

∆−2

2

)

possibilities and matching them; and so
on, until running out of half-edges (which will inevitably happen after ∆/2
steps since we have conditioned on ∆ being even). Alternatively, draw the n
nodes with their ∆ half-edges on the left and draw other ∆/2 ‘virtual nodes’
each with two half-edges; then, match the ∆ half-edges on the left with
those on the right by a random uniform permutation; finally, make the ∆/2
virtual nodes of degree 2 ‘disappear’ by letting their two neighbors (which
are necessarily ‘true’ nodes) be directly connected by an edge.

Exercise 3. As we discussed, this configuration model possibly leads to self-
loops and parallel edges. Let χ1 be the number of self-loops and χ2 be the
number of self-loops. In class, we proved that E[χ1] converges to ν/2 as
n grows large. Prove that E[χ2] converges to ν2/4 as n grows large. (In
fact, assuming finite ν, Theorem 3.1.2 of Durrett shows that χ1 and χ2 are
asymptotically independent with marginals Poisson(ν/2) and Poisson(ν2/4),
respectively).

Exercise 4. Assume µ < +∞, and ν < +∞. Consider the two-stage branch-
ing process with Z0 = 1, and Zt+1 =

∑Zt

i=1
X t+1

i , where, X t
i are independent

random variables, with P(X1
1 = k) = pk, and P(X t

i = k) = qk, for all k ≥ 0,
i ≥ 1, and t ≥ 2. Let ρt := P(Zt = 0), and ρext := limt→+∞ ρt. Prove that

(a) if ν < 1, ρext = 1;
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(b) if ν > 1, ρext = 1 − Φ(1 − ρext) ∈ [0, 1), where Φ(y) =
∑

k pkz
k is

the generating function of the first offspring generation, and ρ is the
smallest fixed point in [0, 1] of Φ(y) :=

∑

k qky
k, i.e., the generating

function of the offspring generations after the first one.
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