
Ph.D. course on Network Dynamics

Homework 1

To be discussed on Tuesday, November 15, 2011

Exercise 1. Prove the hand-shacking lemma: in every undirected graph G =
(V, E),

2|E| =
∑

v∈V

dv ,

where dv denotes the degree of a node v ∈ V.

Exercise 2. Prove that every tree G = (V, E) (i.e., a connected undirected
graph containing no cycles) satisfies

|V| = |E|+ 1 .

Hint: use induction on the number of nodes V.

Exercise 3 (Properties of the Chernoff exponent). The moment generating
function of a real-valued random variable X is defined as

MX(θ) := E [exp(θX)] ∈ [0,+∞] , θ ∈ R .

Observe that trivially MX(0) = 1.

(a) Prove that, if MX(θ
∗) < +∞ for some θ > 0, then MX(θ) < +∞ for

all θ ∈ [0, θ]. Using the dominated convergence theorem, and the series
expansion exp(θX) =

∑

k≥0(θX)k/k!, argue that

MX(θ) =
∑

k≥0

θk

k!
E[Xk] , ∀θ ∈ [0, θ∗) ,
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where θ∗ := sup{θ : MX(θ) < +∞}. Conclude that, if θ∗ > 0, then

E[Xk] = lim
θ↓0

dk

dθk
MX(θ) , ∀k ≥ 1 ,

which explains why MX(θ) is called the moment generating function.

Now define the Chernoff exponent

hX(a) := sup {θa− logMX(θ) : θ ≥ 0} , ∀a ∈ R ,

and prove that:

(b) hX(a) ≥ 0 for all a ∈ R; (this is easy!)

(c) hX(a) = 0 for all a ≤ E[X ]; (hint: apply Jensen’s inequality E[f(X)] ≥
f(E[X ]) to the convex function f(x) := exp(x), or to f(x) = − log x)

(d) if MX(θ
∗) < +∞ for some θ∗ > 0, then hX(a) > 0 for all a > E[X ];

(hint: compute the right derivative in θ = 0 of f(θ) = θa − logMX(θ)
using point (a))

(e) hX(a) is non-decreasing in a; (easy, since it’s defined as the sup of non-
decreasing functions of a)

(f) hX(a) is convex in a; (also easy, since it’s defined as the sup of linear
functions of a)

Exercise 4 (Chernoff exponent in special cases). Show that

(a) if X ∼Bernoulli(p), then hX(a) = a log(a/p)+(1−a) log((1−a)/(1−p));

(b) if Y ∼Poisson(λ), then hY (a) = a log(a/λ)− a+ λ.

Prove the following useful estimates of the Chernoff exponent of a Bernoulli(p):

(c) hX(a) ≥ (a− p)2/(2a).
(hint: use first order Taylor approximation with Lagrange residuals:
hX(a) = hX(p) + h′

X(p)(p− a) + h′′
X(y)(p− a)2/2, for some y ∈ [p, a])
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Exercise 5. Consider the Erdös-Rényi Ramdon graph G(n, p).

(a) Prove that, for all ε ≥ 0,

P(dv ≥ (n−1)p(1+ε)) ≤ exp(−(n−1)pε2/(2(1+ε))) ∀v ∈ {1, . . . , n};

(hint: use Chernoff and Exercise 4(c))

(b) let dmax := max {dv : 1 ≤ v ≤ n} be the maximum of the node degrees,
and prove that, if np ≥ λ logn where λ > 1, then

P(dmax ≥ 4pn)
n→+∞
−→ 0 .

(hint: use point (a) and the union bound)

(c) prove that, for all ε ≥ 0,

P(dv ≤ (n− 1)p(1− ε)) ≤ exp(−(n− 1)pε2/2) ∀v ∈ {1, . . . , n};

(hint: use Chernoff for n−1−dv which is Binomial(n−1, (1−p)) and
argue as in Exercise 4(c) to get a log(a/p)+(1−a) log((1−a)/(1−p)) ≥
(p− a)2/(2p))

(d) let dmin := min {dv : 1 ≤ v ≤ n} be the maximum of the node degrees,
and prove that, if np ≥ λ logn where λ > 2, then there exists α(λ > 0)
such that

P(dmin ≤ α(λ)pn)
n→+∞
−→ 0 .

(hint: use point (c), and the union bound, and see that the argument
works for every α ∈ (0, 1−

√

2/λ))

Remark 1. Durrett’s Lemma 6.5.2 claims that our point (d) is true provided
that only λ > 1 (instead of λ > 2, as we have assumed: his proof seems wrong
to me, what are your thoughts?)

Exercise 6. Consider the Erdös-Rényi Ramdon graph G(n, p). For v ∈
{1, . . . , n}, and k ≥ 3, let Nk(v) be the number of cycles of length k passing
through node v in G(n, p).

(a) Prove that

E[Nk(v)] =
1

2
(n− 1)(n− 2) . . . (n− k + 1)pk ;

(Hint: show that the possible cycles containing v are (n − 1)(n −
2) . . . (n − k + 1)/2, since one has to choose k − 1 out of n − 1 other
nodes (beyond v) ...)
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(b) Using Markov’s inequality, prove that

P(∃cycle of length ≤ k containing v) ≤

{

1
n
λ3

2
λk−2−1
(λ−1)

if λ 6= 1
1
n
k−2
2

if λ = 1

Conclude that:

(c) if λ < 1, then

P(∃cycle containing v) ≤
λ3n−1

2(1− λ)
n→+∞
−→ 0 ;

(d) if λ > 1, then

P(∃cycle of length ≤ a log n containing v) ≤
λna log λ−1

2(λ− 1)
n→+∞
−→ 0 ,

for all a < 1/ log λ

Exercise 7 (Supercritical branching process). Consider a branching process
Zt with offspring distribution pk := P(X = k), let µ := E[X ] =

∑

k kpk be the
expected number of offsprings and Φ(y) := E[yX ] =

∑

k pky
k the generating

function of X. Assume that µ > 1, and p0 < 1, so that that the extinction
probability ρext is the unique solution in (0, 1) of y = Φ(y). Prove that

(a) the process conditioned on extinction, Z̃t, is a branching process with
offspring distribution having generating function

Φ̃(y) =
Φ(ρexty)

ρext
;

(hint: if X̃1
1 is the number of first generation offsprings with a finite

line of descent, then P(X̃1
1 = k, ext) = pkρ

k
ext, for k ≥ 0 )

(b) conditioned on survival, if one looks only at individuals that have an
infinite line of descent, then one obtains a new branching process Z̃t

with offspring distribution having generating function

Φ̃(y) =
Φ((1− ρext)y + ρext)− ρext

1− ρext
.

(hint: if X̃1
1 is the number of first generation offsprings with an infinite

line of descent, then P(X̃1
1 = k) =

∑

j≥k pj
(

j

k

)

(1−ρext)
kρj−k

ext , for k ≥ 1)

4



Exercise 8 (Subcritical branching process and Erdös-Rényi random graph).
Consider a branching process Z0 = 1, Zt+1 =

∑Zt

i=1X
t
i with offspring distri-

bution X t
i ∼Binomial(n, p). Assume that λ = E[X t

i ] = np < 1.

(a) Prove that the total size T :=
∑

t≥0 Zt satisfies

P(T ≥ k) ≤ exp (−k (λ− 1− log λ)) ;

(hint: use Chernoff bound, the explicit computation of Exercise 4(a),
and the inequality log(1 + x) ≤ x)

(b) conclude that, for all a ≥ 0

P(T ≥ a log n) ≤ n−a(λ−1−log λ) .

Now, let us consider the subcritical Erdös-Rényi random graph G(n, p)
with λ = pn < 1. Recall the epidemics interpretation for finding the size of
the connected component of some node v ∈ V := {1, . . . , n}:

S0 = V \ {v} , I0 = {v} , R0 := ∅ ,

St+1 = St\It+1 , It+1 = {j ∈ St : χij = 1 for some j ∈ It} , Rt+1 := Rt∪It .

Assume that (this was mentioned in the last class and will be proven in the
next class), for every v ∈ V one can construct a branching process Zv

t with
offspring distribution Binomial(n, p) such that

|It| ≤ Zt , ∀t ≥ 0 .

Using point (b) and a union bound,

(c) prove that, for every a > (λ− 1− log λ)−1

P

(

max
v

|C(v)| ≥ a log n
)

n→+∞
−→ 0 ,

i.e., the size of the largest component in subcritical G(n, λ/n) is bounded
from above by (λ− 1− log λ)−1 logn.
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