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Network Dynamics, Ph.D. course, 9 ECTS

◮ 18 two-hours meetings (including today)

◮ 1 lecture + 1 exercise session per week

◮ (bi-)weekly homeworks + small final presentation

◮ reference books:

0 notes and specific research papers

1 Easley & Kleinberg, ‘Networks, crowds, and markets’, 2010

2 Newman, ‘Networks’, Oxford U.P., 2010

3 Levine, Peres & Wilmer, ‘Markov chains and mixing’, 2008

4 Draief & Massoulie, ‘Epidemics and rumors in complex networks’

5 Aldous& Fill, ‘Reversible Markov chains and random walks’

◮ today: broad intro, course overview



Similar courses around the world

◮ MIT grad: http://stellar.mit.edu/S/course/6/sp11/6.986/

◮ MIT undergrad:
http://stellar.mit.edu/S/course/6/fa09/6.207J/

◮ Cornell undergrad (by D.Easley, J.Kleinberg, & E.Tardos)::
http://www.infosci.cornell.edu/courses/info2040/2011fa/

◮ Berkeley grad 1 (by D.Aldous):
http://www.stat.berkeley.edu/ aldous/260-FMIE/index.html

◮ Berkeley grad 2 (by E.Mossel):
http://www.stat.berkeley.edu/ mos-
sel/teach/SocialChoiceNetworks10/index.html

◮ North-Easter U. (by A.Barabasi):
http://barabasilab.neu.edu/courses/phys5116/

◮ Michigan U. (by L.Adamic):
http://open.umich.edu/education/si/si508/fall2008/materials



(Complex) networks

(Large-scale) systems of (simple) interacting units

◮ infrastructure networks: transportation, power, gas, and water
distribution, sewer, Internet

◮ informational networks: WWW, citation networks

◮ social networks: friendships, family ties, Facebook etc.

◮ economic networks: supply chains

◮ financial networks: borrowing-lending nets

◮ biological networks: neural networks, gene/protein interactions

◮ ecological networks: food webs, flocks, ...



Studying (complex) networks

network structure + interaction mechanism

⇓

emerging behavior

◮ spread of epidemics and information

◮ design of distributed algorithms

◮ opinion formation, social influence, and learning

◮ network robustness,

◮ cascaded failures, systemic risk

◮ ...



Mathematical representation of network structure

(un)directed (weighted) graph G = (V, E)

V = set of vertices (or nodes) n = |V| < +∞

E ⊆ V × V = set of edges (or links)



Examples 1

◮ Internet: nodes=routers, edges=direct physical links (und.)

◮ traffic networks: nodes=junctions, links=roads (directed)

◮ actors collaboration: nodes=actors, link⇔ same movie (und.)

◮ scientific collab.: nodes=researchers, link=coauthors (und.)



Example 2: political blogs before 2004 US elections

from Adamic and Glance, ‘The Political Blogosphere and the 2004
U.S. Election: Divided They Blog’, 2005



Example 3: Family ties in 15th century Florence

from Padgett and Ansell, ‘Robust action and the rise of the
Medici, 1400-1434’, 1993



Example 4: High school friendships

from Moody, ‘Race, school integration, and friendship segregation
in America’, 2002



Example 5: Sexual contacts

from Newman, ‘The structure and function of complex systems’, 2003



Example 6: protein network in yeast nucleus

from Maslov and Sneppen ‘Specicity and stability in topology of
protein networks’, 2002



Example 7: Freshwater food web

from Martinez, ‘Artifacts or attributes? Effects of resolution on the
Little Rock Lake food web’, 1991
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emerging behavior

structure of large-scale networks is difficult to describe exactly:
huge or non directly accessible data



Random networks

network structure + interaction mechanism

⇓

emerging behavior

structure of large-scale networks is difficult to describe exactly:
huge or non directly accessible data

aggregate properties:

◮ connectivity, diameter / average distance

◮ frequency of subgraphs

◮ degree distribution

statistical approach:

◮ ensemble of graphs

◮ typical properties as n = |V| → +∞



Complex networks

Properties widely observed in empirical studies

1. small world ↔ diameter ≈ log n

2. high clustering ↔ many triangles

3. scale free ↔ power law degree distribution



Small world

◮ Milgram’s experiment (’67): randomly selected group of few
hundreds of people from Omaha (NE). A letter given to each
of them to be delivered to a stock broker living in Boston
(MA). Letter can only be handed to a person know directly.
=⇒ 35% letters reach destination, median # of steps: 5.5
=⇒ “6 degrees of separation”

◮ Albert, Jeong, and Barabasi (’99): WWW network, n ∼ 800M
average distance of webpages ∼ 0.35 + 2.06 log n = 18.59



Power laws
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pk ∼ Ck−γ

show up in quite different contexts:
◮ percentage of words in a book
◮ percentage of cities of a given size
◮ percentage of people having a certain income

Power law =⇒ heavy tails: lots of large cities, lots of rich people

Typically explained by rich-gets-richer mechanisms



Power law networks

dv := #{neighbors of v} pd :=
1

n
#{v : dv = d}

pd ∼ Cd−γ

Empirical studies:

◮ Barabasi and Albert (’99): WWW has γin ∼ 2.1, γout ∼ 2.7

◮ Faloutos (’99): Internet γ ∼ 2.16

◮ actor collaborations: γ ∼ 2.3

◮ Redner (’98): citation network: γin ∼ 2.6, poutd ∼ C exp(−Kd)

◮ Liljeros (’01): # sexual partners per year (in Sweden)
γmale ∼ 3.3, γfemale ∼ 3.5

2 < γ ≤ 3 =⇒ 〈d〉 < +∞ 〈d2〉 = +∞

γ ≥ 3 =⇒ 〈d〉 < +∞ 〈d2〉 < +∞

power law ↔ scale free



Random graphs 1: Erdös-Rényi

G(n, p) = (V, E) |V| = n

P ({v ,w} ∈ E) = p mutually independent
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P ({v ,w} ∈ E) = p mutually independent

n = 100
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Random graphs 1: Erdös-Rényi

G(n, p) = (V, E) |V| = n

P ({v ,w} ∈ E) = p mutually independent

If p = λ/n, with high probability as n → ∞,

phase
transition











λ < 1 =⇒ size(largest component) ≍ log n

λ > 1 =⇒
size(largest component) ≍ n

diam(giant component) ≍ log n

}

small
world

◮ Poisson degree distribution: pd ∼
λd

eλd !
⇒ NO power law

◮ limited #(triangles) ⇒ NO clustering



Random graphs 2: preferential attachment

Barabasi-Albert (’99)

1. start from a small given graph n0

2. add a vertex and connect it with d older vertices randomly
chosen with conditional probability ∝ their current degree

3. repeat step 2 n − n0 times

http://ccl.northwestern.edu/netlogo/models/run.cgi?PreferentialAttachment.836



Random graphs 2: preferential attachment

Barabasi-Albert (’99)

1. start from a small given graph n0

2. add a vertex and connect it with d older vertices randomly
chosen with conditional probability ∝ their current degree

3. repeat step 2 n − n0 times

=⇒











pd ∼ Cd−3 ⇒ power law

diam ≍ log n ⇒ small world

(suitably modified) ⇒ high clustering



Dynamics over networks

network structure + interaction mechanism

⇓

emerging behavior

◮ random walks

◮ linear interactions: averaging / voter model

◮ epidemics: SI, SIR, SIS (contact model)

◮ other: majority model, evolutionary dynamics, games

◮ monotone dynamical systems

◮ ...



Random walk
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◮ P stochastic matrix on V, e.g., Pij = 1/di

◮ P(V (t + 1) = i |V (t) = i) = Pij

◮ network connected ⇒ unique stationary distr. π (πv =
dv

∑
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Random walk
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◮ how fast does ||P(V (t) = · )− π|| go to 0 ?

◮ when will V (t) hit some other w ∈ V?

◮ when will independent V (t) and Ṽ (t) meet for the first time?



Distributed averaging

Gossip model:
◮ every node v has a state xv (t) ∈ R

◮ nodes get activated at independent Poisson times
◮ when a node v is activated, it choses a neighbor w at random

and updates its value to xv (t) = (1− ω)xv (t
−) + ωxw (t

−)
◮ network connected =⇒ convergence to consensus



Distributed averaging
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How is the limit consensus value related to the initial states of the
nodes?
How does the network structure affect the speed of convergence?
What is the effect of heterogeneity of the agents behavior?



Consensus vs disagreement

0  t

most mathematical models:

connected network =⇒

(asymptotic) consensus

“Since universal ultimate agreement is an
ubiquitous outcome of a very broad class
of mathematical models, we are naturally
led to inquire what on earth one must
assume in order to generate ...”
(Abelson ’64)

“If people tend to become more alike in their opinions, attitudes,
and behavior as they interact, why do not such differences
eventually disappear?” (Axelrod ’97)



Gossip model with stubborn agents

G = (V, E) connected

opinions: Xv (t) ∈ R

V = A∪ S

S = {stubborn agents}

Xs(t) = xs ∈ [0, 1] , s ∈ S

model propaganda: political parties, media sources, advertising, ...



Gossip model with stubborn agents (cont’d)

G = (V, E) connected

opinions: Xv (t) ∈ R

V = A∪ S

A = {regular individuals}

ω ∈]0, 1] ‘trust’ T a := random clock (rate-1 Poisson)

T a
k = t =⇒ a chooses b ∼ a at random

Xa(t
−) = x , Xb(t

−) = y =⇒ Xa(t) = x + ω(y − x)



Typical sample-path behavior

250 500
0

0.5

1

t

xs = 1

xs = 0

Xa(t)

∃s, s ′ ∈ S : xs 6= xs′ =⇒ P (NO convergence, NO consensus) = 1



Typical sample-path behavior (cont’d)

250 500
0

0.5

1

t

xs = 1

xs = 0

Za(t) :=
1
t

∫ t

0 Xa(u)du

P (Za(t) converges) = 1



Voter model
ω = 1 =⇒ voter model: Xa(t) = Xb(t

−)

t=0 t

Dual process: (Vi (t))i∈V coalescing random walk, absorbing set S

(Xi (t))i∈V
d
= (XVi (t)(0))i∈V



Epidemics 1: SI

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node
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Epidemics 1: SI

◮ Xv (t) ∈ {S , I}

◮ xv (t) → I if and only if v is in the same connected component
of some w with xw (0) = I

◮ how fast will every node become infected?



Epidemics 2: SIR

◮ S=susceptible I=infected R=recovered

◮ Xv (t) ∈ {S , I ,R}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes get recovered (if infected)
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Epidemics 2: SIR

◮ S=susceptible I=infected R=recovered

◮ Xv (t) ∈ {S , I ,R}

◮ the process stops in finite T with xv (T ) ∈ {I ,R}

◮ how big is T?

◮ what is the fraction of xv (T ) = R?



Epidemics 3: SIS (a.k.a. contact model)

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ susceptible node becomes infected when meeting infected node

◮ random nodes become susceptible (if infected)



Epidemics 3: SIS

◮ S=susceptible I=infected

◮ Xv (t) ∈ {S , I}

◮ a random link gets activated at t (meeting)

◮ in finite (very very large) T xv(T ) = S for all v

◮ metastable state with nontrivial fraction of xv = S



More dynamics

◮ majority voter

◮ threshold models

◮ Moran process: evolution

◮ games

◮ dynamic flows

◮ ...



Analysis techniques

◮ Perron-Frobenius theory of positive systems

◮ monotone dynamical systems

◮ fast-mixing

◮ coupling

◮ duality

◮ martingale arguments

◮ mean-field limits

◮ branching process approximations

◮ density evolution

◮ ...



Next meetings: conference room M-building 1st floor
◮ Wed, October 2, 10:15-12:00: lecture

◮ Tue, October 8, 13:15-15:00: exercise

◮ Wed, October 9, 10:15-12:00: lecture

◮ Tue, October 15, 13:15-15:00: exercise

◮ Wed, October 16, 10:15-12:00: lecture

◮ Tue, October 22, 13:15-15:00: exercise

◮ Wed, October 23, 10:15-12:00: lecture

◮ Tue, October 29, 13:15-15:00: exercise

◮ Wed, October 30, 10:15-12:00: lecture

◮ Tue, November 5, 13:15-15:00: exercise

◮ Wed, November 6, 10:15-12:00: lecture

◮ Tue, November 12, 13:15-15:00: exercise

◮ Wed, November 13, 10:15-12:00: lecture

◮ Tue, November 19, 13:15-15:00: exercise

◮ Wed, November 20, 10:15-12:00: lecture

◮ Tue, November 26, 13:15-15:00: exercise

◮ Wed, November 27, 10:15-12:00: lecture


