
BOLYAI SOCIETY

MATHEMATICAL STUDIES� �

Combinatorics�
Paul Erd�os is Eighty �Volume ��
Keszthely �Hungary�� ����� pp� �����

Random Walks on Graphs� A Survey

L� LOV�ASZ

Dedicated to the marvelous random walk

of Paul Erd�os

through universities� continents� and mathematics

Various aspects of the theory of random walks on graphs are surveyed� In
particular� estimates on the important parameters of access time� commute time�
cover time and mixing time are discussed� Connections with the eigenvalues
of graphs and with electrical networks� and the use of these connections in
the study of random walks is described� We also sketch recent algorithmic
applications of random walks� in particular to the problem of sampling�

�� Introduction

Given a graph and a starting point� we select a neighbor of it at random� and
move to this neighbor� then we select a neighbor of this point at random�
and move to it etc� The �random� sequence of points selected this way is a
random walk on the graph�

A random walk is a �nite Markov chain that is time�reversible �see
below�� In fact� there is not much di�erence between the theory of random
walks on graphs and the theory of �nite Markov chains� every Markov chain
can be viewed as random walk on a directed graph� if we allow weighted
edges� Similarly� time�reversible Markov chains can be viewed as random
walks on undirected graphs� and symmetric Markov chains� as random walks
on regular symmetric graphs� In this paper we	ll formulate the results in
terms of random walks� and mostly restrict our attention to the undirected
case�
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Random walks arise in many models in mathematics and physics� In
fact� this is one of those notions that tend to pop up everywhere once you
begin to look for them� For example� consider the shu
ing of a deck of
cards� Construct a graph whose nodes are all permutations of the deck� and
two of them are adjacent if they come by one shu
e move �depending on
how you shu
e�� Then repeated shu
e moves correspond to a random walk
on this graph �see Diaconis ����� The Brownian motion of a dust particle
is random walk in the room� Models in statistical mechanics can be viewed
as random walks on the set of states�

The classical theory of random walks deals with random walks on sim�
ple� but in�nite graphs� like grids� and studies their qualitative behaviour�
does the random walk return to its starting point with probability one� does
it return in�nitely often� For example� P�olya ������ proved that if we do a
random walk on a d�dimensional grid� then �with probability �� we return to
the starting point in�nitely often if d � �� but only a �nite number of times
if d � �� See Doyle and Snell ����� for more recent results on random walks
on in�nite graphs� see also Thomassen �����

More recently� random walks on more general� but �nite graphs have
received much attention� and the aspects studied are more quantitative�
how long we have to walk before we return to the starting point� before we
see a given node� before we see all nodes� how fast does the distribution
of the walking point tend to its limit distribution�

As it turns out� the theory of random walks is very closely related
to a number of other branches of graph theory� Basic properties of a
random walk are determined by the spectrum of the graph� and also by
electrical resistance of the electric network naturally associated with graphs�
There are a number of other processes that can be de�ned on a graph�
mostly describing some sort of �di�usion� �chip��ring� load�balancing in
distributed networks etc��� whose basic parameters are closely tied with the
above�mentioned parameters of random walks� All these connections are
very fruitful and provide both tools for the study and opportunities for
applications of random walks� However� in this survey we shall restrict our
attention to the connections with eigenvalues and electrical networks�

Much of the recent interest in random walks is motivated by important
algorithmic applications� Random walks can be used to reach �obscure�
parts of large sets� and also to generate random elements in large and
complicated sets� such as the set of lattice points in a convex body or
the set of perfect matchings in a graph �which� in turn� can be used to
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the asymptotic enumeration of these objects�� We	ll survey some of these
applications along with a number of more structural results�

We mention three general references on random walks and �nite Markov
chains� Doyle and Snell ����� Diaconis ��� and the forthcoming book of
Aldous ����

Acknowledgement� My thanks are due to Peter Winkler� Andr�as Luk�acs
and Andrew Kotlov for the careful reading of the manuscript of this paper�
and for suggesting many improvements�

�� Basic notions and facts

Let G � �V�E� be a connected graph with n nodes and m edges� Consider
a random walk on G� we start at a node v�� if at the t�th step we are at
a node vt� we move neighbor of vt with probability ��d�vt�� Clearly� the
sequence of random nodes �vt � t � � �� � � �� is a Markov chain� The node
v� may be �xed� but may itself be drawn from some initial distribution P��
We denote by Pt the distribution of vt�

Pt�i� � Prob�vt � i��

We denote by M � �pij�i�j�V the matrix of transition probabilities of
this Markov chain� So

pij �

�
��d�i�� if ij � E�
� otherwise�

�����

Let AG be the adjacency matrix of G and let D denote the diagonal matrix
with �D�ii � ��d�i�� then M � DAG� If G is d�regular� then M � ���d�AG�
The rule of the walk can be expressed by the simple equation

Pt�� � MTPt�

�the distribution of the t�th point is viewed as a vector in RV �� and hence

Pt � �MT �tP��

It follows that the probability ptij that� starting at i� we reach j in t steps

is given by the ij�entry of the matrix M t�
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If G is regular� then this Markov chain is symmetric� the probability of
moving to u� given that we are at node v� is the same as the probability of
moving to node v� given that we are at node u� For a non�regular graph G�
this property is replaced by time�reversibility� a random walk considered
backwards is also a random walk� More exactly� this means that if we look
at all random walks �v�� � � � � vt�� where v� is from some initial distribution
P�� then we get a probability distribution Pt on vt� We also get a probability
distribution Q on the sequences �v�� � � � � vt�� If we reverse each sequence�
we get another probability distribution Q� on such sequences� Now time�
reversibility means that this distribution Q� is the same as the distribution
obtained by looking at random walks starting from the distribution Pt�
�We	ll formulate a more handy characterization of time�reversibility a little
later��

The probability distributions P�� P�� � � � are of course di�erent in gen�
eral� We say that the distribution P� is stationary �or steady�state� for the
graph G if P� � P�� In this case� of course� Pt � P� for all t � � we call
this walk the stationary walk�

A one�line calculation shows that for every graph G� the distribution

��v� �
d�v�

�m

is stationary� In particular� the uniform distribution on V is stationary if the
graph is regular� It is not di�cult to show that the stationary distribution
is unique �here one has to use that the graph is connected��

The most important property of the stationary distribution is that
if G is non�bipartite� then the distribution of vt tends to a stationary
distribution� as t � � �we shall see a proof of this fact� using eigenvalues�
a little later�� This is not true for bipartite graphs if n � �� since then the
distribution Pt is concentrated on one color class or the other� depending
on the parity of t�

In terms of the stationary distribution� it is easy to formulate the
property of time�reversibility� it is equivalent to saying that for every pair
i� j � V � ��i�pij � ��j�pji� This means that in a stationary walk� we step as
often from i to j as from j to i� From ������ we have ��i�pij � ����m� for
ij � E� so we see that we move along every edge� in every given direction�
with the same frequency� If we are sitting on an edge and the random
walk just passed through it� then the expected number of steps before it
passes through it in the same direction again is �m� There is a similar
fact for nodes� if we are sitting at a node i and the random walk just
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visited this node� then the expected number of steps before it returns is
����i� � �m�d�i�� If G is regular� then this �return time� is just n� the
number of nodes�

�� Main parameters

We now formally introduce the measures of a random walk that play the
most important role in the quantitative theory of random walks� already
mentioned in the introduction�

�a� The access time or hitting time Hij is the expected number of steps
before node j is visited� starting from node i� The sum

��i� j� � H�i� j��H�j� i�

is called the commute time� this is the expected number of steps in a
random walk starting at i� before node j is visited and then node i is
reached again� There is also a way to express access times in terms of
commute times� due to Tetali �����

H�i� j� �
�

�

�
��i� j� �

X
u

��u����u� j�� ��u� i��

�
� �����

This formula can be proved using either eigenvalues or the electrical
resistance formulas �sections � and ���

�b� The cover time �starting from a given distribution� is the expected
number of steps to reach every node� If no starting node �starting
distribution� is speci�ed� we mean the worst case� i�e�� the node from
which the cover time is maximum�

�c� The mixing rate is a measure of how fast the random walk converges to
its limiting distribution� This can be de�ned as follows� If the graph is

non�bipartite� then p
�t�
ij � dj���m� as t��� and the mixing rate is

� � lim sup
t��

max
i�j

����p�t�ij � dj
�m

������t �
�For a bipartite graph with bipartition fV�� V�g� the distribution of
vt oscillates between �almost proportional to the degrees on V ��

� and
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�almost proportional to the degrees on V ��

� � The results for bipartite
graphs are similar� just a bit more complicated to state� so we ignore
this case��

One could de�ne the notion of �mixing time� as the number of steps
before the distribution of vt will be close to uniform �how long should
we shu
e a deck of cards��� This number will be about �logn���� � ���
However� the exact value depends on how �in which distance� the phrase
�close� is interpreted� and so we do not introduce this formally here� In
section � we will discuss a more sophisticated� but �canonical� de�nition of
mixing time�

The surprising fact� allowing the algorithmic applications mentioned
in the introduction� is that this �mixing time� may be much less than
the number of nodes� for an expander graph� for example� this takes only
O�logn� steps�

Example �� To warm up� let us determine the access time for two points
of a path on nodes � � � � � n� ��

First� observe that the access time H�k � �� k� is one less than the
expected return time of a random walk on a path with k�� nodes� starting
at the last node� As remarked� this return time is �k� soH�k��� k� � �k���

Next� consider the access times H�i� k� where  � i � k � n� In order
to reach k� we have to reach node k��� this takes� on the average�H�i� k���
steps� From here� we have to get to k� which takes� on the average� �k � �
steps �the nodes beyond the k�th play no role�� This yields the recurrence

H�i� k� � H�i� k� �� � �k � ��

whence H�i� k� � ��i������i���� � � ����k� �� � k�� i�� In particular�
H�� k� � k� �this formula is closely related to the well�known fact that
Brownian motion takes you distance

p
t in t time��

Assuming that we start from � the cover time of the path on n nodes
will also be �n����� since it su�ces to reach the other endnode� The reader
might �nd it entertaining to �gure out the cover time of the path when
starting from an internal node�

�From this it is easy to derive that the access time between two nodes
at distance k of a circuit of length n is k�n � k�� To determine the cover
time f�n� of the circuit� note that it is the same as the time needed on a
very long path� starting from the midpoint� to reach n nodes� Now we have
to reach �rst n�� nodes� which takes f�n��� steps on the average� At this
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point� we have a subpath with n�� nodes covered� and we are sitting at one
of its endpoints� To reach a new node means to reach one of the endnodes
of a path with n � � nodes from a neighbor of an endnode� Clearly� this is
the same as the access time between two consecutive nodes of a circuit of
length n� This leads to the recurrence

f�n� � f�n� �� � �n� ���

and through this� to the formula f�n� � n�n� �����

Example �� As another example� let us determine the access times and
cover times for a complete graph on nodes f� � � � � n��g� Here of course we
may assume that we start from � and to �nd the access times� it su�ces
to determine H�� ��� The probability that we �rst reach node � in the t�th

step is clearly
�
n��
n��

�t��
�

n�� � and so the expected time this happens is

H�� �� �
�X
t��

t

�
n� �

n� �

�t�� �

n� �
� n � ��

The cover time for the complete graph is a little more interesting� and
is closely related to the so�called Coupon Collector Problem �if you want to
collect each of n di�erent coupons� and you get every day a random coupon
in the mail� how long do you have to wait��� Let �i denote the �rst time
when i vertices have been visited� So �� �  � �� � � � �� � � � � � �n�
Now �i����i is the number of steps while we wait for a new vertex to occur
� an event with probability �n� i���n� ��� independently of the previous
steps� Hence

E��i�� � �i� �
n � �

n� i
�

and so the cover time is

E��n� �
n��X
i��

E��i�� � �i� �
n��X
i��

n� �

n� i
� n logn�

A graph with particularly bad random walk properties is obtained by
taking a clique of size n�� and attach to it an endpoint of a path of length
n��� Let i be any node of the clique and j� the �free� endpoint of the path�
Then

H�i� j� � ��n���
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In fact� starting from i� it takes� on the average� n�� � � moves to reach
the attachment node u� then with probability �� ��n� we move to another
node of the clique� and we have to come back about n�� times before we can
expect to move into the path� But one can argue that on a path of length
n��� if we start a random walk from one end� we can expect to return to the
starting node n�� times� Each time� we can expect to spend ��n�� steps to
get back on the path�

Bounds on the main parameters

We start with some elementary arguments �as we shall see later� eigenvalues
provide more powerful formulas�� Recall that if we have just traversed
an edge� then the expected number of steps before it is traversed in this
direction again is �m� In other words� if we start from node i� and j is
an adjacent node� then the expected time before the edge ji is traversed
in this direction is �m� Hence the commute time for two adjacent nodes is
bounded by �m� It follows that the commute time between two nodes at
distance r is at most �mr � n�� A similar bound follows for the cover time�
by considering a spanning tree� It is an important consequence of this fact
that these times are polynomially bounded� �It should be remarked that
this does not remain true on directed graphs��

The following proposition summarizes some known results about cover
and commute times� An O�n�� upper bound on the access and cover times
was �rst obtained by Aleliunas� Karp� Lipton� Lov�asz and Racko� ���� The
upper bound on the access time in �a�� which is best possible� is due to
Brightwell and Winkler �����

It is conjectured that the graph with smallest cover time is the complete
graph �whose cover time is � n logn� as we have seen� and this is of course
independent of the starting distribution�� Aldous ��� proved that this is true
up to a constant factor if the starting point is drawn at random� from the
stationary distribution� The asymptotically best possible upper and lower
bounds on the cover time given in �b� are recent results of Feige ��������

For the case of regular graphs� a quadratic bound on the cover time was
�rst obtained by Kahn� Linial� Nisan and Saks ��� ��� The bound given in
�c� is due to Feige �����

Theorem ���� �a� The access time between any two nodes of a graph on
n nodes is at most

����!�n� � �����n� � �����n� � if n �  �mod ���
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����!�n� � �����n� � �����n� �����!� if n � � �mod ���

����!�n� � �����n� � �����n� �����!� if n � � �mod ���

�b� The cover time from any starting node in a graph with n nodes is at
least ��� o����n logn and at most ����! � o����n��

�c� The cover time of a regular graph on n nodes is at most �n��

It is a trivial consequence of these results that the commute time be�
tween any two nodes is also bounded by n�� and for a regular graph� the
access time is at most �n� and the commute time is bounded by �n��

No non�trivial lower bound on the commute time can be found in terms
of the number of nodes� the commute time between the two nodes in the
smaller color class of the complete bipartite graph K��n is  � It is true�
however� that ��u� v� � �m�d�u� for all u and v �cf� Proposition ��� below�
and also Corollary ����� In particular� the commute time between two nodes
of a regular graph is always at least n�

The situation is even worse for the access time� this can remain bounded
even for regular graphs� Consider a regular graph �of any degree d � �� that
has a cutnode u� let G � G� � G�� V �G�� 	 V �G�� � fug� and let v be a
node of G� di�erent from u� Then the access time from v to u is the same
as the access time from v to u in G�� which is independent of the size of the
rest of the graph�

One class of graphs for which a lower bound of n�� for any access time
can be proved is the class of graphs with transitive automorphism group�
cf� Corollary ����

Symmetry and access time

The access time from i to j may be di�erent from the access time from j
to i� even in a regular graph� There is in fact no way to bound one of these
numbers by the other� In the example at the end of the last paragraph�
walking from u to v we may� with probability at least ��d� step to a node of
G�� Then we have to walk until we return to u� the expected time before this
happens more than jV �G��j� So 	�u� v� � jV �G��j� which can be arbitrarily
large independently of 	�v� u��

Still� one expects that time�reversibility should give some sort of sym�
metry of these quantities� We formulate two facts along these lines� The
�rst is easy to verify by looking at the walks �backwards��
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Proposition ���� If u and v have the same degree� then the probability
that a random walk starting at u visits v before returning to u is equal to
the probability that a random walk starting at v visits u before returning
to v�

�If the degrees of u and v are di�erent� then the ratio of the given
probabilities is ��v����u� � d�v��d�u���

The probabilities in Proposition ��� are related to the commute time
��u� v� in an interesting way�

Proposition ���� The probability that a random walk starting at u visits
v before returning to u is �����u� v���u���

Proof� Let q denote the probability in question� Let � be the �rst time
when a random walk starting at u returns to u and 
� the �rst time when
it returns to u after visiting v� We know that E��� � �m�d�u� and by
de�nition� E�
� � ��u� v�� Clearly � � 
 and the probability of � � 
 is
exactly q� Moreover� if � � 
 then after the �rst � steps� we have to walk
from u until we reach v and then return to u� Hence E�
��� � ���q�E�
��
and hence

q �
E���

E�
�
�

�m

d�u���u� v�
�

A deeper symmetry property of access times was discovered by Cop�
persmith� Tetali and Winkler ����� This can also be veri�ed by elementary
means considering walks visiting three nodes u� v and w� and then reversing
them� but the details are not quite simple�

Theorem ���� For any three nodes u� v and w�

H�u� v� �H�v� w��H�w� u� � H�u� w� �H�w� v� �H�v� u��

An important consequence of this symmetry property is the following�

Corollary ���� The nodes of any graph can be ordered so that if u precedes
v then H�u� v� � H�v� u�� Such an ordering can be obtained by �xing any
node t� and order the nodes according to the value of H�u� t��H�t� u��

Proof� Assume that u precedes v in the ordering described� Then H�u� t��
H�t� u� � H�v� t��H�t� v� and hence H�u� t� �H�t� v� � H�v� t��H�t� u��
By Theorem ���� this is equivalent to saying that H�u� v�� H�v� u��
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This ordering is not unique� because of the ties� But if we partition
the nodes by putting u and v in the same class if H�u� v� � H�v� u� �this
is an equivalence relation by Proposition ����� then there is a well�de�ned
ordering of the equivalence classes� independent of the reference node t� The
nodes in the lowest class are �di�cult to reach but easy to get out of�� the
nodes in the highest class are �easy to reach but di�cult to get out of�� It
is worth formulating a consequence of this construction�

Corollary ���� If a graph has a vertex�transitive automorphism group then
H�i� j� � H�j� i� for all nodes i and j�

Access time and cover time

The access times and commute times of a random walk have many nice
properties and are relatively easy to handle� The cover time is more elusive�
But there is a very tight connection between access times and cover times�
discovered by Matthews ����� �See also Matthews ��!�� this issue of the J�
Theor� Probability contains a number of other results on the cover time��

Theorem ���� The cover time from any node of a graph with n nodes is
at most �� � ����� � � � �� ���n�� times the maximum access time between
any two nodes� and at least �� � ����� � � � �� ���n�� times the minimum
access time between two nodes�

Let us sketch a simple proof for the somewhat weaker upper bound of
� log� n times the maximum access time�

Lemma ���� Let b be the expected number of steps before a random walk
visits more than half of the nodes� and let h be the maximum access time
between any two nodes� Then b � �h�

�From this lemma� the theorem is easy� The lemma says that in �h
steps we have seen more than half of all nodes� by a similar argument� in
another �h steps we have seen more than half of the rest etc�

Proof� Assume� for simplicity� that n � �k � � is odd� Let 	v be the time
when node v is �rst visited� Then the time � when we reach more than half
of the nodes is the �k � ���st largest of the 	v � HenceX

v

	v � �k � ����

and so

b � E��� � �

k � �

X
v

E�	v� � n

k � �
h � �h�
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Monotonicity

Let G� be obtained from the graph G by adding a new edge ab� Since this
new graph is denser� one expects that a random walk on it turns back less
frequently� and therefore the access times� commute times� and cover times
decrease� As it turns out� this does not hold in general�

First� it is easy to see that some access times may increase dramatically
if an edge is added� Let G be a path on n nodes� with endpoints a and b�
Let s � a and let t be the unique neighbor of s� Then the access time from s
to t is �� On the other hand� if we add the edge �a� b� then with probability
���� we have to make more than one step� so the access time from s to t

will be larger than one� in fact� it jumps up to n� �� as we have seen�

One monotonicity property of access time that does hold is that if an
edge incident with t is added� then the access time from s to t is not larger
in G� than in G�

The commute time� which is generally the best behaved� is not mono�
tone either� For example� the commute time between two opposite nodes of
a ��cycle is  � if we add the diagonal connecting the other two nodes� the
commute time increases to �� But the following �almost monotonicity�
property is true �we	ll return to its proof in section ���

Theorem ��	� If G� arises from a graph G by adding a new edge� and G
has m edges� then the commute time between any two nodes in G� is at
most � � ��m times the commute time in G� In other words� the quantity
��s� t��m does not decrease�

We discuss brie"y another relation that one intuitively expects to hold�
that access time increases with distance� While such intuition is often
misleading� the following results show a case when this is true �Keilson
������

Theorem ���
� Let G be a graph and t � V �G��

�a� If we choose s uniformly from the set of neighbors of t� then the expec�
tation of H�s� t� is exactly ��m�d�t��� ��

�b� If we choose s from the stationary distribution over V � then the ex�

pectation of H�s� t� is at least
�m

d�t�

�
�� d�t�

�m

��

� So if we condition on

s 
� t� the expectation of H�s� t� is at least ��m�d�t��� ��

�c� If we choose t from the stationary distribution over V � then the expec�
tation of H�s� t� is at least n� � � ��n�
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�a� is just a restatement of the formula for the return time� The proof
of �b� and �c� uses eigenvalue techniques� It is easy to derive either from
�b� or �c� that maxs�tH�s� t� � n � �� We remark that the expectation in
�c� is independent of s �see formula �������

Applications of the cover time and commute time bounds

Perhaps the �rst application of random walk techniques in computer science
was the following �Aleliunas� Karp� Lipton� Lov�asz and Racko� ����� Let
G � �V�E� be a connected d�regular graph� v� � V �G�� and assume that
at each node� the ends of the edges incident with the node are labelled
�� �� � � � � d� A traverse sequence �for this graph� starting point� and labelling�
is a sequence �h�� h�� � � � � ht� � f�� � � � � dgt such that if we start a walk at v�
and at the ith step� we leave the current node through the edge labelled hi�
then we visit every node� A universal traverse sequence �for parameters n
and d� is a sequence which is a traverse sequence for every d�regular graph
on n nodes� every labelling of it� and every starting point�

It is quite surprising that such sequences exist� and in fact need not be
too long�

Theorem ����� For every d � � and n � �� there exists a universal traverse
sequence of length O�d�n� logn��

A consequence of this fact is that the reachability problem on undirected
graphs is solvable in non�uniform logspace� We do not discuss the details�

Proof� The �construction� is easy� we consider a random sequence� More
exactly� let t �  dn� logn� and letH � �h�� � � � � ht� be randomly chosen from
f�� � � � � dgt� For a �xed G� starting point� and labelling� the walk de�ned
by H is just a random walk� so the probability p that H is not a traverse
sequence is the same as the probability that a random walk of length t does
not visit all nodes�

By Theorem ���� the expected time needed to visit all nodes is at most
�n�� Hence �by Markov	s Inequality� the probability that after �n� steps
we have not seen all nodes is less than ���� Since we may consider the next
�n� steps as another random walk etc�� the probability that we have not
seen all nodes after t steps is less than ��t���n

�� � n��nd�

Now the total number of d�regular graphs G on n nodes� with the ends
of the edges labelled� is less than ndn �less than nd choices at each node��
and so the probability that H is not a traverse sequence for one of these
graphs� with some starting point� is less than nnndn��nd � �� So at least
one sequence of length t is a universal traverse sequence�
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The results of Coppersmith� Tetali and Winkler ���� discussed above
served to solve the following problem� let us start two random walks on a
graph simultaneously� how long does it take before they collide� There are
variations depending on whether the two random walks step simultaneously�
alternatingly� or in one of several other possible ways� Here we only consider
the worst case� in which a �schedule daemon� determines which random
walk moves at any given time� whose aim is to prevent collision as long as
possible�

The motivation of this problem is a self�stabilizing token�management
scheme for a distributed computing network� The �token� is the authoriza�
tion for the processor carrying it to perform some task� and at any time�
only one processor is supposed to carry it� Assume that by some distur�
bance� two processors carry the token� They pass it around randomly� until
the two tokens collide� from then on� the system is back to normal� How
long does this take�

Let M�u� v� denote the expected number of steps before two random
walks� starting from nodes u and v� collide� It is clear that M�u� v� �
H�u� v� �v may never wake up to move�� Coppersmith� Tetali and Winkler
���� prove the nice inequality

M�u� v� � H�u� v� �H�v� w��H�w� u�

for some vertex w� Thus it follows that the collision time is O�n���

�� The eigenvalue connection

Recall that the probability ptij of the event that starting at i� the random

walk will be at node j after t steps� is an entry of the matrix M t� This
suggests that the powerful methods of the spectral theory of matrices can
be used�

The matrix M has largest eigenvalue �� with corresponding left eigen�
value � and corresponding right eigenvalue �� the all�� vector on V � In fact�
MT� � � expresses the fact that � is the stationary distribution� while
M� � � says that exactly one step is made from each node�

Unfortunately� M is not symmetric unless G is regular� but it is easy
to bring it to a symmetric form� In fact� we kow that M � DA� where
A � AG is the adjacency matrix of G and D is the diagonal matrix in which
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the i�th diagonal entry is ��d�i�� Consider the matrix N � D���AD��� �
D����MD���� This is symmetric� and hence can be written in a spectral
form�

N �
nX

k��

�kvkv
T
k �

where �� � �� � � � � � �n are the eigenvalues of N and v�� � � � � vn are
the corresponding eigenvectors of unit length� Simple substitution shows
that wi �

p
d�i� de�nes an eigenvector of N with eigenvalue �� Since this

eigenvector is positive� it follows from the Frobenius�Perron Theorem that
�� � � � �� � � � � � �n � �� and that �possibly after "ipping signs�
v� � ���

p
�m�w� i�e�� v�i �

p
d�i���m �

p
��i�� It also follows by standard

arguments that if G is non�bipartite then �n � ���
Now we have

M t � D���N tD���� �
nX

k��

�tkD
���vkv

T
kD

���� � Q�
nX

k��

�tkD
���vkv

T
kD

����

where Qij � ��j�� In other words�

ptij � ��j� �
nX

k��

�tkvkivkj

s
d�j�

d�i�
� �����

If G is not bipartite then j�kj � � for k � �� � � � � n� and hence

ptij � ��j� �t���

as claimed above� We shall return to the rate of this convergence later�

Spectra and access times

We start a more in�depth study of connections between random walks and
spectra by deriving a spectral formula for access times� Let H � RV�V

denote the matrix in which Hij � H�i� j�� the access time from i to j� Let
#�i� be the set of neighbors of node i� The key equation is that if i 
� j then

H�i� j� � � �
�

d�i�

X
v�	�i�

H�v� j�

�since the �rst step takes us to a neighbor v of i� and then we have to reach
j from there�� Expressing this equation in matrix notation� we get that
F � J �MH �H is a diagonal matrix� Moreover�

FT� � J� �HT �M � I�T� � J� � ��
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whence

�F �ii �
�

��i�
�

�m

d�i�
�

Thus F � �mD� i�e��

�I �M�H � J � �mD� �����

We want to solve this �matrix equation� for H � Of course� this is not
possible since I �M is singular� in fact� with every X satisfying ����� �in
place of H�� every matrix X � �aT also satis�es it for any vector a� But
these are all� as elementary linear algebra shows� and so a can be determined
using the relations

H�i� i� �  �i � V ��

So if we �nd any solution of ������ we can obtain H by subtracting the
diagonal entry from each column�

Let M� denote the matrix ��T � i�e�� M�

ij � ��j� �note that M� is

the limit of M t as t � ��� Substitution shows that the matrix X �
�I �M �M�����J � �mD� satis�es ������ Diagonalizing M as above� we
get the following formula�

Theorem ����

H�s� t� � �m
nX

k��

�

�� �k

�
v�kt
d�t�

� vksvktp
d�s�d�t�

�
�

As an immediate corollary we obtain a similar formula for the commute
time�

Corollary ����

��s� t� � �m
nX

k��

�

�� �k

�
vktp
d�t�

� vksp
d�s�

��

�

Using that
�

�
� �

�� �k
� �

�� ��

along with the orthogonality of the matrix �vks�� we get
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Corollary ����

m

�
�

d�s�
�

�

d�t�

�
� ��s� t� � �m

�� ��

�
�

d�s�
�

�

d�t�

�
�

If the graph is regular� the lower bound is n� If we have a expander graph�
which can be characterized as a regular graph for which ����� ��� � O����
then it follows that the commute time between any pair of nodes is $�n��

In these formulas� the appearence of ���k in the denominators suggest
that it will be necessary to �nd good bounds on the spectral gap� the
di�erence � � �� � �� � ��� This is an important parameter for many
other studies of graphs� and we shall return to its study in the next section�

To warm up to the many applications of Theorem ���� the reader is
encouraged to give a proof of the week symmetry property of access times
expressed in Theorem ���� and of the expression for access times in terms of
commute times ������ Another easy corollary is obtained if we average the
access time over all t� We have

X
t

��t�H�s� t� �
X
t

nX
k��

�

�� �k

�
v�kt � vktvks

s
d�t�

d�s�

�

�
nX

k��

�

�� �k

�X
t

v�kt � vks

s
�

d�s�

X
t

vkt
p
d�t�

�
�

Using that vk is of unit length and it is orthogonal to v� for k � �� we get
the nice formula X

t

��t�H�s� t� �
nX

k��

�

�� �k
� �����

Note that this value is independent of the starting node s�

As another application� we �nd the access time between two antipodal
nodes of the k�cube Qk � Let 
 � �� � � � � � and � � ��� � � � � �� represent two
antipodal nodes of the k�cube� As is well known� we get an eigenvector vb
of M �or A� for every �� vector b � f� �gk� de�ned by �vb�x � ����b�x�
The corresponding eigenvalue of M is � � ���k�b � �� Normalizing vb and
substituting in Theorem ���� we get that

H�
� �� � k
kX

j��

�
k

j

�
�

�j
��� ����j��



�� L� Lov�asz

To �nd the asymptotic value of this expression� we substitute
�
k
j

	
�Pk��

p��

� p
j��

	
� and get

H�
� �� � k

kX
j��

k��X
p��

�

�j

�
p

j � �

�
��� ����j�

� k

k��X
p��

�

��p� ��

kX
j��

�
p� �

j

�
��� ����j�

� k

k��X
p��

�p

p� �
� �k��

k��X
j��

�

�j
k

k � j
 �k �

�It is easy to see that the exact value is always between �k and �k����

As a further application� let us prove that �more distant targets are
more di�cult to reach� �Theorem ����b�� The argument is similar to the
proof of ������ We have

X
s

��s�H�s� t� �
X
s

nX
k��

�

�� �k

�
v�kt

d�s�

d�t�
� vktvks

s
d�s�

d�t�

�
�

Using again that vk is orthogonal to v� for k � �� we have

X
s

��s�H�s� t� �
�m

d�t�

nX
k��

�

�� �k
v�kt�

By the inequality between arithmetic and harmonic means �considering the
v�kt as weights�� we have

Pn
k��

�
���k

v�ktPn
k�� v

�
kt

�
Pn

k�� v
�
ktPn

k����� �k�v
�
kt

�

Now here
nX

k��

v�kt �
nX

k��

v�kt � ��t� � �� ��t�

and

nX
k��

��� �k�v
�
kt �

nX
k��

��� �k�v
�
kt � ��

nX
k��

�kv
�
kt � �� �N�t�t � ��
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Thus X
s

��s�H�s� t�� �

��t�
��� ��t����

which proves the assertion�

Perhaps the most important applications of eigenvalue techniques con�
cern the mixing rate� which we	ll discuss in a separate section�

Spectra and generating functions

One may obtain spectral formulas carrying even more information by intro�
ducing the probability generating function

F �x� �
�X
t��

xtM t � �I � xM����

�the �i� j� entry Fij�x� of this matrix is the generating function for the
probabilities ptij��

Using this function� we can express other probabilities via standard
techniques of generating functions� As an example� let qtij denote the
probability that the random walk starting at i hits node j for the �rst
time in the t�th step� It is clear that

ptij �
tX

s��

qsijp
t�s
jj �

We can translate this relation in terms of generating functions as follows�
Let

Gij�x� �
�X
t��

qtijx
t�

then
Fij�x� � Gij�x�Fjj�x��

So the matrix G�x� � �Gij�x�� arises from F �x� by scaling each column so
that the diagonal entry becomes ��

We may use the spectral decomposition of M to get more explicit
formulas� We have

Fij�x� �

s
d�j�

d�i�

�X
t��

nX
k��

�x�k�
tvkivkj �

s
d�j�

d�i�

nX
k��

vkivkj
�

�� x�k
�
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Hence we also get the generating function

Gij�x� �

s
d�j�

d�i�

nX
k��

vkivkj
�

�� x�k



nX

k��

v�kj
�

�� �kx
�

�From this another proof of Theorem ��� follows easily� since

H�s� t� � G�

st����

By calculating higher derivatives� we can derive similar �though increasingly
complicated� formulas for the higher moments of the time a node t is �rst
visited�

�� The electrical connection

Let G � �V�E� be a connected graph and S � V � A function  � V � R is
called a �harmonic function with set of poles S� if

�

d�v�

X
u�	�v�

�u� � �v�

holds for every v �� S �the set S is also called the boundary of the harmonic
function�� Not surprisingly� harmonic functions play an important role in
the study of random walks� after all� the averaging in the de�nition can
be interpreted as expectation after one move� They also come up in the
theory of electrical networks� and also in statics� This provides a connection
between these �elds� which can be exploited� In particular� various methods
and results from the theory of electricity and statics� often motivated by
physics� can be applied to provide results about random walks�

We start with describing three constructions of harmonic functions� one
in each �eld mentioned�

�a� Let �v� denote the probability that a random walk starting at node v
hits s before it hits t� Clearly�  is a harmonic function with poles s
and t� We have �s� � � and �t� � �
More generally� if we have a set S � V and a function � � S � R� then
we de�ne �v� for v � V n S as the expectation of ��s�� where s is the
�random� node where a random walk starting at v �rst hits S� Then
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�v� is a harmonic function with pole set S� Moreover� �s� � ��s�
for all s � S�

�b� Consider the graph G as an electrical network� where each edge rep�
resents a unit resistance� Assume that an electric current is "owing
through G� entering at s and leaving at t� Let �v� be the voltage of
node v� Then  is a harmonic function with poles s and t�

�c� Consider the edges of the graph G as ideal springs with unit Hooke
constant �i�e�� it takes h units of force to stretch them to length h��
Let us nail down nodes s and t to points � and  on the real line� and
let the graph �nd its equilibrium� The energy is a positive de�nite
quadratic form of the positions of the nodes� and so there is a unique
minimizing position� which is the equilibrium� Clearly all nodes will lie
on the segment between  and �� and the positions of the nodes de�ne
a harmonic function with poles s and t�
More generally� if we have a set S � V and we �x the positions of
the nodes in S �in any dimension�� and let the remaining nodes �nd
their equilibrium� then any coordinate of the nodes de�nes a harmonic
function with pole set S�

Let us sum up some trivial properties of harmonic functions� Clearly�
�v� lies between the minimum and maximum of  over S� Moreover� given
S � V and � � S � R� there is a unique harmonic function on G with
pole set S extending �� �The existence follows by either construction �a�
or �c�� the uniqueness follows by considering the maximum of the di�erence
of two such functions��

In particular it follows that every harmonic function with at most one
pole is constant� We denote by st the �unique� harmonic function with
poles s and t such that st�s� � � and st�t� � �

Another consequence of the uniqueness property is that the harmonic
functions constructed in �a� and �c�� and �for the case jSj � �� in �b� are the
same� As an application of this idea� we show the following useful charac�
terizations of commute times �see Nash�Williams ���� Chandra� Raghavan�
Ruzzo� Smolensky and Tiwari ������

Theorem ���� �i� Consider the graph G as an electrical network as in �b�
and let Rst denote the resistance between nodes s and t� Then the commute
time between nodes s and t is exactly �mRst�

�ii� Consider the graph G as a spring structure in equilibrium� as in
example �c�� with two nodes s and t nailed down at � and � Then the force
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pulling the nails is
�

Rst
�

�m

��s� t�
�

The energy of the system is

�

�Rst
�

m

��s� t�
�

Note that equation ����� can be used to express access times in terms
of resistances or spring forces �Tetali ������

Proof� By construction �b�� st�v� is the voltage of v if we put a current
through G from s to t� where the voltage of s is  and the voltage of t
is �� The total current through the network is

P
u�	�t� st�u�� and so the

resistence is

Rst �

�
� X

u�	�s�

st�u�


A
��

�

On the other hand� �a� says that st�u� is the probability that a random
walk starting at u visits s before t� and hence �

d�t�

P
u�	�t� st�u� is the

probability that a random walk starting at t hits s before returning to t�
By Proposition ���� this probability is �m�d�t���s� t�� This proves assertion
�i�� The proof of �ii� is similar�

Using the �topological formulas� from the theory of electrical networks
for the resistance� we get the following characterization of commute time�

Corollary ���� Let G be a graph and s� t � V � Let G� denote the graph
obtained from G by identifying s and t� and let T �G� denote the number of
spanning trees of G� Then

��s� t� � �m
T �G��

T �G�
�

The following fact is called Raleigh�s Principle in the theory of electrical
networks� We derive it as a consequence of Theorem ����

Corollary ���� Adding any edge to a graph G does not increase any
resistance Rst� Consequently� no commute time ��s� t� is increased by more
than a factor of �m� ���m�

In fact� it su�ces to prove that deleting an edge from a graph G cannot
increase the energy of the equilibrium con�guration in the spring structure
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�c�� Clearly� deleting an edge while keeping the positions of the nodes �xed
cannot increase the energy� If we let the new graph �nd its equilibrium then
the energy can only further decrease�

Combining Corollaries ��� and ���� a little algebraic manipulation gives
the following inequality for the numbers of spanning trees in a graph G and
in its subgraphs G� e� G� f � and G� e� f � where e and f are two edges
of G�

T �G� e�T �G� f� � T �G�T �G� e� f�� �����

�� Mixing rate

In several recent applications of random walks� the most important param�
eter is the mixing rate� Using eigenvalues� it is an easy task to determine
the mixing rate in polynomial time �see below�� but this result does not tell
the whole story� since� as we shall see� the underlying graph in the cases
of interest is exponentially large� and the computation of the eigenvalues
by the tools of linear algebra is hopeless� Therefore� combinatorial tech�
niques that lead to approximations only but are more manageable are often
preferable� Two main techniques that have been used are coupling and con�
ductance� In this section we discuss these techniques� in the next� we give
several applications in algorithm design�

Mixing rate and coupling

We shall illustrate the methods for bounding the mixing rate on a special
class of graphs� �For reasons of comparison� we will also apply the other
methods to the same graph�� These graphs are the cartesian sum Ck

n of
k circuits of length n� where n is odd� The node set of this graph is
f� � � � � n � �gk� and two nodes �x�� � � � � xk� and �y�� � � �yk� are adjacent
i� there exists an i� � � i � k� such that xj � yj for j 
� i and xi �
yi � � �mod n��

Let us start a random walk �v�� v�� � � �� on Ck
n from an arbitrary initial

distribution P�� To estimate how long we have to walk to get close to
the stationary distribution �which is uniform in this case�� let us start
another random walk �w�� w�� � � ��� in which w� is drawn from the uniform
distribution� Of course� wt is then uniformly distributed for all t�

The two walks are not independent� we �couple� them as follows� The
vertices of Ck

n are vectors of length k� and a step in the random walk consists
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of changing a randomly chosen coordinate by one� We �rst generate the
step in the �rst walk� by selecting a random coordinate j� � � j � k� and
a random � � f��� �g� The point vt�� is obtained by adding � to the j�
th coordinate of vt� Now the trick is that if vt and wt agree in the j�th
coordinate� we generate wt�� by adding � to the j�th coordinate of wt� else�
we subtract � from the j�th coordinate of wt� �All operations are modulo
n��

The important fact is that viewing �w�� w�� � � �� in itself� it is an entirely
legitimate random walk� On the other hand� the �coupling� rule above
implies that once a coordinate of vt becomes equal to the corresponding
coordinate of wt� it remains so forever� Sooner or later all coordinates
become equal� then vt will have the same distribution as wt� i�e�� uniform�

To make this argument precise� let us look at the steps when the j�th
coordinate is selected� The expected number of such steps before the two
walks will have equal j�th coordinate is the average access time between two
nodes of the circuit on length n� which is �n������� So the expected number
of steps before all coordinates become equal is k�n� � ����� By Markov	s
inequality� the probability that after kn� steps vt and wt are still di�erent
is less than ���� and so the probability that after ckn� steps these points
are still di�erent is less than ��c� Hence for any T that is large enough�

jP �vT � S�� jSj
nk
j � jP �vT � S�� P �wT � S�j � P �wT 
� vT � � ��T��kn

���

We obtain that the mixing rate is at most �����kn
�� � �� �

kn�
�

This method is elegant but it seems that for most applications of inter�
est� there is no simple way to �nd a coupling rule� and so it applies only in
lucky circumstances�

Mixing rate and the eigenvalue gap

An algebraic formula for the mixing rate is easily obtained� Let � �
minfj��j� j�njg� then from ����� it is easy to derive�

Theorem ���� For a random walk starting at node i�

jPt�j�� ��j�j �
s
d�j�

d�i�
�t�

More generally�

jPt�S�� ��S�j �
s
��S�

��i�
�t�
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So the mixing rate is at most �� it is not di�cult to argue that equality
must hold here� Thus we obtain�

Corollary ���� The mixing rate of a random walk on a non�bipartite graph
G is � � maxfj��j� j�njg�

In most applications� we don	t have to worry about �n� for example�
we can add d�i� loops at each point i� which only slows down the walk by
a factor of �� but results in a graph with positive semide�nite adjacency
matrix� The crucial parameter is ��� or rather� the �spectral gap� � � ���
Note that log����� � ��� �����

Theorem ��� concerns the convergence to the stationary distribution
in terms of the total variation distance� which seems to be the most im�
portant for applications� Other measures have other� sometimes technical�
adventages� For example� using the �� measure has the adventage that the
distance is improving after each step �Fill ������

X
j

�Pt���j�� ��j���

��j�
� �

X
j

�Pt�j�� ��j���

��j�
�

As an application of Theorem ���� let us determine the mixing rate of
a random walk on an n�dimensional cube� This graph is bipartite� so we
add loops� let	s add n loops at each node� The eigenvalues of the resulting
graph are � �� �� � � � � �n� and so the eigenvalues of the transition matrix are
� ��n� ��n� � � �� �n� ���n� �� Hence the mixing rate is �n� ���n�

Next� let us do the graph Ck
n� where n is odd� The eigenvalues of Cn

are � cos��r��n��  � r � n� Hence the eigenvalues of the adjacency matrix
Ck
n are all numbers

� cos��r���n� � � cos��r���n� � � � �� � cos��rk��n�

�see e�g� Lov�asz �� �� exercise ���!�� In particular� the largest eigenvalue is
�of course� �k� the second largest is ��k� ���� cos����n�� and the smallest
is �k cos��n� ����n�� From this it follows that the mixing rate is

�� �

k

�
�� cos

��

n

�
� �� ���

kn�
�
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The eigenvalue gap and conductance

Let G be a graph and S � V � S 
� �� Let r�S� denote the set of edges
connecting S to V n S� We de�ne the conductance of the set S � V � S 
� �
by

%�S� �
jr�S�j

�m��S���V n S�
and the conductance of the graph by

% � min
S

%�S��

where the minimum is taken over all non�empty proper subsets S � V � If
the graph is d�regular� then the conductance of S is

%�S� �
njr�S�j

djSj � jV n Sj �

To digest this quantity a little� note that jr�S�j��m is the frequency
with which a stationary random walk switches from S to V n S� while
��S���V nS� is the frequency with which a sequence of independent random
elements of V � drawn from the stationary distribution �� switches from S
to V n S� So % can be viewed as a certain measure of how independent
consecutive nodes of the random walk are�

Sinclair and Jerrum ���� established a connection between the spectral
gap and the conductance of the graph� A similar result for the related� but
somewhat di�erent parameter called expansion rate was proved by Alon
��� and� independently� by Dodziuk and Kendall ����� cf� also Diaconis and
Stroock ����� All these results may be considered as discrete versions of
Cheeger	s inequality in di�erential geometry�

Theorem ����
%�

 
� �� �� � %�

We	ll sketch the proof of this fundamental inequality� but �rst� we state
�without proof� a simple lemma that is very useful in the study of the
spectral gap�

Lemma ����

�� �� � min

��
�
X

ij�E�G�

�xi � xj�
� �

X
i

��i�xi � �
X
i

��i�x�i �
�

�m

��
�
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�each edge ij is considered only once in the sum��

Proof� Proof of Theorem ��� To warm up� let us prove the upper bound
�rst� By Lemma ���� it su�ces to exhibit a vector x � RV such that

X
i

��i�xi � �
X
i

��i�x�i � ����m�� �����

and X
ij�E�G�

�xi � xj�
� � %� �����

Let S be a set with minimum conductance� and consider a vector of the
type

xi �

�
a� if i � S�
b� if i � V n S�

Such a vector satis�es ����� if

a �

s
��V n S�
�m��S�

� b � �
s

��S�

�m��V n S� �

and then straightforward substitution shows that ����� is also satis�ed�

To prove the lower bound� we again invoke Lemma ���� we prove that
for every vector x � RV satisfying ������ we have

X
ij�E�G�

�xi � xj�
� � %�

 
� �����

Conductance enters the picture through the following inequality� which
is� in a sense� the ����version� of ������

Lemma ���� Let G be a graph with conductance %� Let y � RV and
assume that ��fi � yi � g� � ���� ��fi � yi � g� � ��� and

P
i ��i�jyij �

�� Then X
�i�j��E

jyi � yj j � m%�

Proof� Proof of the Lemma Label the points by �� � � � � n so that

y� � y� � yt �  � yt�� � � � � � ys � ys�� � � � � � yn�
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Set Si � f�� � � � � ig� Substituting yj � yi � �yi�� � yi� � � � �� �yj � yj����
we get

X
�i�j��E

jyi� yj j �
n��X
i��

jr�Si�j�yi��� yi� � �m%
n��X
i��

�yi��� yi���Si���V nSi��

Using that ��Si� � ��� for i � t� ��Si� � ��� for i � s � �� and that
yi�� � yi �  for t � i � s� we obtain

X
�i�j��E

jyi � yj j � m%
tX

i��

�yi�� � yi���Si� �m%
n��X
i�t��

�yi�� � yi���V n Si�

� m%
X
i

��i�jyij � m%�

Now we return to the proof of the theorem� Let x be any vector
satisfying ������ We may assume that x� � x� � � � �� xn� Let k �� � k � n�
be the index for which ��f�� � � � � k� �g� � ��� and ��fk��� � � � � ng� � ����
Setting zi � maxf� xi � xkg and choosing the sign of x appropriately� we
may assume that

X
i

��i�z�i �
�

�

X
i

��i��xi� xk�
� �

�

�

X
i

��i�x�i � xk
X
i

��i�xi�
�

�
x�k

�
�

�m
�

�

�
x�k �

�

�m
�

Now Lemma ��� can be applied to the numbers yi � z�i �
P

i ��i�z
�
i � and we

obtain that X
�i�j��E

jz�i � z�j j � m%
X
i

��i�z�i �

On the other hand� using the Cauchy�Schwartz inequality�

X
�i�j��E

jz�i � z�j j �
�
� X

�i�j��E

�zi � zj�
�


A

����
� X

�i�j��E

�zi � zj�
�


A

���

�

Here the second factor can be estimated as follows�X
�i�j��E

�zi � zj�
� � �

X
�i�j��E

�z�i � z�j � � �m
X
i

��i�z�i �
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Combining these inequalities� we obtain

X
�i�j��E

�zi � zj�
� �

�
� X

�i�j��E

jz�i � z�j j

A

�� X
�i�j��E

�zi � zj�
�

� %�m�

�X
i

��i�z�i

���
�m
X
i

��i�z�i

�
%�m

�

X
i

��i�z�i �
%�

 
�

Since trivially X
�i�j��E

�xi � xj�
� �

X
�i�j��E

�zi � zj�
��

the theorem follows�

Corollary ���� For any starting node i� any node j and any t � �

��P t�j�� ��j�
�� �
s
d�j�

d�i�

�
�� %�

 

�t

�

In another direction� Chung and Yau ��!� considered a re�ned notion of
conductance� replacing ��S���V n S� in the denominator by some power
of it� and showed how this relates to higher eigenvalues� Diaconis and
Salo��Coste ���� used similar inequalities to get improved bounds on the
mixing time� in particular on the early part when the distribution is highly
concentrated� Theorem ��� is a discrete analogue of Cheeger	s inequality
from di�erential geometry� and these inequalities are discrete analogues of
the Harnack� Sobolev and Nash inequalities known from the theory of the
heat equation� and in fact� these results represent �rst steps in the exciting
area of studying �di�erence equations� on graphs as discrete analogues of
di�erential equations�

Conductance and multicommodity �ows

Conductance itself is not an easy parameter to handle� it is NP�hard to de�
termine it even for an explicitly given graph� But there are some methods
to obtain good estimates� The most important such method is the construc�
tion of multicommodity 	ows� Let us illustrate this by a result of Babai and
Szegedy �����
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Theorem ���� Let G be a connected graph with a node�transitive auto�
morphism group� with diameter D� Then the conductance of G is at least
���dD�� If the graph is edge�transitive� its conductance is at least ��D�

Proof� For each pair i� j of points� select a shortest path Pij connecting
them� Let P denote the family of these paths and all their images under
automorphisms ofG� The total number of paths in P �conting multiplicities�

is

�
n

�

�
g� where g is the number of automorphisms of G� Moreover� P

contains exactly g paths connecting any given pair of points�

We claim that every edge occurs in at most Dg�n� �� paths of P � In
fact� if an edge e occurs in p paths then so does every image of e under
the automorphisms� and there are at least n�� distinct images by node�
transitivity� This gives pn�� edges� but the total number of edges of paths

in P is at most Dg

�
n

�

�
� which proves the claim�

Now let S � V �G�� jSj � s � jV �G�j��� The number of paths in P
connecting S to V �G� n S is exactly gs�n � s�� On the other hand� this
number is at most jr�S�j �Dg�n� ��� and hence

jr�S�j � gs�n� s�

Dg�n� ��
�

s

D
� n � s

n � �
�

Hence the conductance of S is

njr�S�j
ds�n� s�

� n

n� �

�

dD
�

�

dD
�

This proves the �rst assertion� The second follows by a similar argument�

Let us use Theorem ��! to estimate the mixing rate of Ck
n �where n

is odd�� This graph has an edge�transitive automorphism group� and its
diameter is k�n� ����� Hence its conductance is more than ���kn�� and so
its mixing rate is at most

�� �

�k�n�

We see that the bound is worse than the coupling and eigenvalue bounds�
in fact� depending on the relative value of n and k� the mixing rate may be
close to either the upper or the lower bound in Theorem ����

If we look in the proof of Theorem ��! at all paths connecting a given
pair fu� vg of nodes� and take each such path with weight ��n�g� we get
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a "ow from u to v with value ��n�� The little argument given shows that

these

�
n

�

�
"ows load each edge with at most D�n� ���n�� The rest of the

argument applies to any graph and shows the following�

Proposition ���� If we can construct in G a �ow fuv of value ��u���v�
from u to v for each u 
� v� and the maximum total load of these

�
n
�

	
�ows

on any edge is at most �� then the conductance of G is at least ����m���

This proof method has many applications �Jerrum and Sinclair �����
Diaconis and Stroock ����� Fill ������ But what are its limitations� i�e�� how
close can we get to the true conductance� An important theorem of Leighton
and Rao ��!� shows that we never lose more than a factor of O�logn��

Theorem ��	� Let G be a graph with conductance %� Then there exists
a system of �ows fuv of value ��u���v� from u to v for each u 
� v� loading
any edge by at most O�logn��m%�

There are many re�nements and extensions of this fundamental result
�see e�g� Klein� Agraval� Ravi and Rao ����� Leighton et al ������ but these
focus on multicommodity "ows and not on conductance� so we do not discuss
them here�

Shortcuts

In the last paragraphs we have sketched the following steps in estimating
the mixing rate�

mixing rate� eigenvalue gap� conductance� multicommodity "ows�

It is possible to make �shortcuts� here� thereby obtaining bounds that are
often sharper and more "exible�

Diaconis and Stroock ���� and Fill ���� prove the following lower bound
on the eigenvalue gap� shortcutting the notion of conductance� We de�ne
the cost of a "ow f as

P
e f�e��

Theorem ���
� Assume that there exists a �ow fuv of value ��u���v� from
u to v for each u 
� v� such that the maximum total load of these

�n
�

	
�ows

on any edge is at most �� and the cost of each �ow fuv is at most ���u���v��
Then

�� � �� �

�m��
�
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Lov�asz and Simonovits ������ introduced a method that estimates the
mixing rate directly using conductance or related parameters� without the
use of eigenvalue techniques� This makes the method more "exible� We
formulate one application that is implicit in these papers�

Theorem ����� Let t � Z� and assume that for each  � s � t and
 � x � �� every level set A � fv � V � P s�v� � xg has conductance at
least �� Then for every S � V �

jP t�S�� ��S�j �
p
jV j
�
�� ��

�

�t

�

In other words� if the convergence P t � � is slow� then among the level
sets of the P t there is one with small conductance� Other applications of
this method include results where sets S with �small� measure ��S� are
allowed to have small conductance�

�� Sampling by random walks

Probably the most important applications of random walks in algorithm
design make use of the fact that �for connected� non�bipartite graphs� the
distribution of vt tends to the stationary distribution � as t��� In most
�though not all� cases� G is regular of some degree d� so � is the uniform
distribution� A node of the random walk after su�ciently many steps is
therefore essentially uniformly distributed�

It is perhaps surprising that there is any need for a non�trivial way
of generating an element from such a simple distribution as the uniform�
But think of the �rst application of random walk techniques in real world�
namely shu
ing a deck of cards� as generating a random permutation of ��
elements from the uniform distribution over all permutations� The problem
is that the set we want a random element from is exponentially large �with
respect to the natural size of the problem�� In many applications� it has in
addition a complicated structure� say� we consider the set of lattice points
in a convex body or the set of linear extensions of a partial order�
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Enumeration and volume computation

The following general scheme for approximately solving enumeration prob�
lems� called the product estimator� is due to Jerrum� Valiant and Vazirani
����� and also to Babai ��� for the case of �nding the size of a group� Let
V be the set of elements we want to enumerate� The size of V is typically
exponentially large in terms of the natural �size� k of the problem� Assume
that we can �nd a chain of subsets V� � V� � � � �Vm � V such that for each
i�

�a� jV�j is known �usually jV�j � ���

�b� jVi��j�jVij is polynomially bounded �in k��

�c� m is polynomially bounded�

�d� we have a subroutine to generate a random element uniformly dis�
tributed over Vi� for each � � i � m�

Then we can estimate the ratios jVi��j�jVij by generating a polynomial
number of elements of Vi�� and counting how often we hit Vi� The product
of these estimates and of jV�j gives an estimate for jV j� This scheme leads
to a randomized polynomial time approximation algorithm �provided �a��
�b�� �c� and �d� are satis�ed and the subroutine in �d� is polynomial��

The crucial issue is how to generate a random element of Vi in polyno�
mial time� We discuss this question for Vm � V � in virtually all applications
of the method� every Vi itself is of the same type as V � and so the same
arguments apply �this phenomenon is called �self�reducibility���

As mentioned above� random walks provide a general scheme for this�
We de�ne a connected graph G � �V�E� on which a random walk can be
implemented� i�e�� a random neighbor of a given node can be generated �most
often� the nodes have small �polynomial� maximum degree�� By adding
loops� we can make the graph regular and non�bipartite� Then we know
that if we stop after a large number of steps� the distribution of the last
node is very close to uniform� Our results about the mixing rate tell us how
long we have to follow the random walk� but to �nd good estimates of the
mixing rate �on the spectral gap� or on the conductance� is usually the hard
part�

This method for generating a random element from a combinatorial
structure was initiated by Broder ���� for the problem of approximating the
number of perfect matchings in a graph� A proof of the polynomiality of
the method was given by Jerrum and Sinclair ���� for the case of graphs
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with minimum degree at least n��� Whether the method can be modi�ed
to handle the case of sparse graph is an open problem�

Let us sketch this important result� Let G be a graph on n nodes with
all degrees at least n��� We want to generate a random perfect matching
of a graph G on n nodes �n even�� approximately uniformly� Therefore� we
want to de�ne a graph whose nodes are the perfect matchings� and do a
random walk on this graph� However� there is no easy way to step from one
perfect matching to another� therefore� we extend the set we consider and
include also all near�perfect matchings �i�e�� matchings with n��� � edges��
We connect two near�perfect matchings by an edge if they have n���� edges
in common� and connect a perfect matching to all near�perfect matchings
contained in it� to obtain a graph H � The degrees in H are bounded by �n�
we add loops at the nodes to make H regular of degree �n�

Now one can construct a multicommodity "ow �basically following the
tranformation of one matching to the other by alternating paths� to show
that ��%�H� is polynomially bounded in n� Hence we can generate an
essentially uniformly distributed random node ofH by walking a polynomial
number of steps� If this node corresponds to a perfect matching� we stop�
Else� we start again� The assumption about the degrees can be used to show
that the number of perfect matchings is at least a polynomial fraction of
the number of near�perfect matchings� and hence the expected number of
iterations before a perfect matching is obtained is polynomially bounded�

Other applications of this method involve counting the number of lin�
ear extensions of a partial order �Khachiyan and Karzanov ������ eulerian
orientations of a graph �Mihail and Winkler ������ forests in dense graphs
�Annan �!��� and certain partition functions in statistical mechanics �Jerrum
and Sinclair ��!��� See Welsh ���� for a detailed account of fully polynomial
randomized approximation schemes for enumeration problems�

As another example� consider the fundamental problem of �nding the
volume of a convex body� The exact computation of the volume is di�cult�
which can be stated� and in some sense proved� in a mathematically exact
way� Dyer and Frieze ���� and Khachiyan ���� proved that computing the
volume of an n�dimensional convex polytope is &P�hard� Other results by
Elekes ���� and B�ar�any and F'uredi ���� show that for general convex bodies
�given by� say� a separation oracle� see �Gr'otschel� Lov�asz and Schrijver �����
for background information on the complexity of geometric algorithms� even
to compute an estimate with bounded relative error takes exponential time�
and the relative error of any polynomial time computable estimate grows
exponentially with the dimension�
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It was a breakthrough in the opposite direction when Dyer� Frieze and
Kannan ��!� designed a randomized polynomial time algorithm �i�e�� an al�
gorithm making use of a random number generator� which computes an
estimate of the volume such that the probability that the relative error is
larger than any prescribed positive number is arbitrarily small� Randomiza�
tion reduces the relative error of a polynomial time approximation algorithm
from exponentially large to arbitrarily small�

Several improvements of the original algorithm followed� here are some
contributions and their running time estimates �we count the number of calls
on the separation oracle� the � after the O means that we suppress factors
of logn� as well as factors depending on the error bounds�� Dyer� Frieze
and Kannan ��!� O��n�
�� Lov�asz and Simonovits ��� O��n���� Applegate
and Kannan � � O��n���� Lov�asz ���� O��n���� Dyer and Frieze �� � O��n���
Lov�asz and Simonovits ���� O��n
�� Kannan� Lov�asz and Simonovits ���
O��n��

Here is the general idea� Let K be a convex body in Rn� Using known
techniques from optimization� we may assume that K contains the unit ball
and is contained in a ball with radius R � n���� Let Ki be the intersection
of K and the ball about  with radius �i�n �i � � �� � � � � m � d�n logne��
Then K� � K� � � � � � Km � K� vol�Ki����vol�Ki� � �� and vol�K��
is known� Thus the general scheme for enumeration described above can
be adapted� provided we know how to generate a random point uniformly
distributed in a convex body�

For this� we use random walk techniques� There is some technical
di�culty here� since the set of points in a convex body is in�nite� One
can either consider a su�ciently �ne grid and generate a random gridpoint
in K� or extend the notions and methods discussed above to the case of an
in�nite underlying set� Both options are viable� the second takes more work
but leads to geometrically clearer arguments about mixing rates�

We de�ne the random walk as follows� The �rst point is generated
uniformly from the unit ball B� Given vt� we generate a random point
u uniformly from the ball vt � B� with center vt and radius � �here the
parameter � depends on the version of the algorithm� but typically it is
about ��

p
n with some small positive constant �� B� � �B�� If u � K

then we let vt�� � u� else� we generate a new point u and try again� This
procedure corresponds to the random walk on the graph whose vertex set
is K� with two points x� y � K connected by an edge i� jx� yj � ��

The stationary distribution of this random walk is not the uniform
distribution� but a distribution whose density function is proportional to
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the �degrees� ��x� � vol�K 	 �x� B����vol�B��� This quantity ��x� is also
called the �local conductance� at x� it is the probability that we can make
a move after a single trial� If the stepsize is su�ciently small then this
quantity� however� is constant on most of K� and the error committed is
negligible�

�In several versions of the algorithm� the graph is padded with �loops�
to make it regular� More exactly this means that if u is chosen uniformly
from vt � B� and u �� K� then we set vt�� � vt� So the two random walks
produce the same set of points� but in one� repetition is also counted� It
turns out that for the description as given above� the conductance can be
estimated in a very elegant way as in Theorem ��� below� while in the other
version� points with small local conductance cause a lot of headache��

Putting these together� we have the outline of the volume algorithm�
The analysis of it is� however� not quite easy� The main part of the analysis is
the estimation of the conductance of the random walk inK� The proof of the
following theorem involves substantial geometric arguments� in particular
isoperimetric inequalities�

Theorem ���� The conductance of the random walk in a convex body K
with diameter D is at least const � ���pnD��

This implies that it takes only O��nR����� steps to generate a random
point in K�

This theorem suggests that one should choose the stepsize as large as
possible� In fact� choosing � � R would give us a random point in K in a
single step� The problem is that if � is large� we have to make too many
trials before we can move to the next point� It is easy to calculate that in
a stationary walk� the average �waiting time�� i�e�� the average number of
points u to generate before we get one in K is

vol�K�

�Z
K
��x� dx

One can prove that this quantity is bounded from above by ���� � �
p
n��

and hence it is O��� if � is chosen less than ����
p
n�� This means that the

number of unsuccessful trials is only a constant factor more than that the
number of steps in the random walk� which is O��R�n�� for this choice of
the stepsize�

The issue of achieving an R that is as small as possible is crucial but
does not belong to this survey� With somewhat elaborate tricks� we can
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achieve R � O�
p
n� and hence the cost of generating a random point in

K is O��n��� One has to generate O��n� points to estimate each ratio
vol�Ki��vol�Ki��� with su�cient accuracy� and there are O��n� such ratios�
This gives the total of O��n� steps �oracle calls��

In virtually all applications of this method� the key issue is to estimate
the conductance of the appropriate graph� This is usually a hard problem�
and there are many unsolved problems� For example� is the conductance
of a �matroid basis graph� polynomially bounded from below� �A matroid
basis graph has all bases of a matroid �E�M� as nodes� two being connected
i� their symmetric di�erence has cardinality ��� This is proved for graphic
matroids �Aldous ���� Broder ����� cf� the proof of Theorem ����� and for
a larger class of matroids called balanced �Mihail and Feder ����� It is
interesting to note that the property of graphic matroids that allows this
proof to go through is inequality ����� for the number of spanning trees�

Metropolis �lter

In many applications of random walks� the distribution we want to gen�
erate a random element from is not uniform� For example� a randomized
optimization algorithm may be considered as a method of generating a ran�
dom feasible solution from some probability distribution Q that is heavily
concentrated on optimal and near�optimal solutions� To be more speci�c�
let f � V � R� be the objective function� then maximizing f over V is
just the extreme case when we want to generate a random element from a
distribution concentrated on the set of optimum solutions� If� instead� we
generate a random point w from the distibution Q in which Q�v� is propor�
tional to �say� exp�f�v��T �� where T is a very small positive number� then
with large probability w will maximize f �

The elegant method of random walk with Metropolis �lter �Metropolis�
Rosenbluth� Rosenbluth� Teller and Teller �� �� describes a simple way to
modify the random walk� so that it converges to an arbitrary prescribed
probability distribution�

Let G � �V�E� be a graph� for simplicity� assume that G is d�regular�
Let F � V � R�� and let v� be any starting point for the random walk� Let
vt be the node where we are after t steps� We choose a random neighbor u
of vt� If F �u� � F �vt� then we move to u� else� we "ip a biased coin and
move to u only with probability F �u��F �vt�� and stay at v with probability
�� F �u��F �vt��

It is clear that this modi�ed random walk is again a Markov chain� in
fact� it is easy to check that it is also time�reversible �and so it can be con�
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sidered as a random walk on a graph with edge�weights�� The �miraculous�
property of it is the following�

Theorem ���� The stationary distribution QF of the random walk on a
graph G �ltered by a function F is given by the formula

QF �v� �
F �v�P

w�V F �w�
�

An additional important property of this algorithm is that in order to
carry it out� we do not even have to compute the probabilities QF �v�� it
su�ces to be able to compute the ratios F �u��F �vt� � QF �u��QF �vt�� This
property of the Metropolis �lter is fundamental in some of its applications�

Unfortunately� techniques to estimate the mixing time �or the conduc�
tance� of a Metropolis��ltered walk are not general enough� and not too
many succesful examples are known� One notable exception is the work
of Applegate and Kannan � �� who proved that random walks on the lat�
tice points in a convex body� �ltered by a smooth log�concave function�
mix essentially as fast as the corresponding un�ltered walk� They applied
this technique to volume computation� Diaconis and Hanlon ���� extended
certain eigenvalue techniques to walks on highly symmetric graphs� �ltered
by a function which is �smooth� and �log�concave� in some sense� Some
negative results are also known �Jerrum �� ���

Exact stopping rules

Let us start with the following funny fact�

Fact ���� Let G be a circuit of length n and u any starting node� Then
the probability that a random walk starting at u visits every node before
hitting v is the same for each v 
� u�

Clearly� if we replace the circuit with the complete graph� we get a
similar result� Answering a question of Graham� it was proved by Lov�asz
and Winkler ���� that no other graph has such a property� This follows
from the next result� which veri�es in a sense the intuition that the last
node visited is more likely to be �far� than �near�� Let p�u� v� denote the
probability that a random walk starting at u visits every node before v�

Theorem ���� If u and v are two non�adjacent nodes of a connected graph
G and fu� vg is not a cutset� then there is a neighbor w of u such that
p�w� v�� p�u� v��



Random Walks on Graphs� A Survey ��

Consequently� if G is e�g� ��connected� then for each v� the nodes u for
which p�u� v� is minimal are neighbors of v�

As another result leading up the question of �exact stopping rules��
let us describe a method due to Aldous ��� and Broder ����� generating a
random spanning tree in a graph� so that each spanning tree is returned
with exactly the same probability�

Theorem ���� Consider a random walk on a graph G starting at node u�
and mark� for each node di�erent from u� the edge through which the node
was �rst entered� Let T denote the set of marked edges� With probability
�� T is a spanning tree� and every spanning tree occurs with the same
probability�

Of course� only the second assertion needs proof� but this is not quite
trivial� Our discussion below contains a proof based on a certain coupling
idea� for a more direct proof� see Lov�asz �� �� problem ���� �or work it out
yourself��

Consider a spanning tree T with root u� and draw a �directed� edge
to each spanning tree T � with root v if uv � E�G� and T � arises from T
by deleting the �rst edge on the path from v to u and adding the edge
uv� Let H denote the resulting digraph� Clearly each tree with root v has
indegree and outdegree d�v� in H � and hence in the stationary distribution
of a random walk on H � the probability of a spanning tree with a given
root is proportional to the degree of the root �in G�� If we draw a spanning
tree from this distribution� and then forget about the root� we get every
spanning tree with the same probability�

Now observe that a random walk on G induces a random walk on H as
follows� Assume that we are at a node v of G� and at a node �T� v� in H �
where T is a spanning tree� If we move along an edge vw in G� then we can
move to a node �T �� w� in H by removing the �rst edge of the path from w
to v and adding the edge vw to the current spanning tree�

Also observe that by the time the random walk in G has visited all
nodes �or at any time thereafter�� the current spanning tree in H will be
the tree formed by the last exits from each node� and the root is the last
node visited� To relate this procedure to Theorem ���� let us consider the
random walk on G for N steps �where N is much larger than the cover time
of G� Viewing this backward is also a legal random walk on G� since G
is undirected� If we follow that corresponding random walk on H � then it
ends up with a rooted tree �T� vN�� which is the tree of �rst entries for this
reverse walk� unless not all nodes of G were visited during the N returns to
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v�� Letting N � �� the probability of this exception tends to � and the
distribution of �T� vN� tends to the stationary distribution on H which� for
�xed vN � is uniform on spanning trees� This proves Theorem ����

Looking at this proof� it is natural to ask� can we get rid of the small
error arising from the possibility that not all nodes are visited during N
steps� After all� this is easily recognized� so perhaps in these cases we
should walk a bit longer� More generally� given a random walk on a graph
�or a Markov chain�� can we de�ne a �stopping rule�� i�e�� a function that
assigns to every walk on the graph �starting at a given node u� either
�STOP� or �GO�� so that �a� with probability �� every random walk is
stopped eventually and �b� the distribution of the node where the random
walk is stopped is the stationary distribution� We also consider randomized
stopping rules� where coins may be "ipped to determine whether we should
stop�

Our �rst example above shows that for circuits and complete graphs�
the �last node visited� rule provides an answer to the problem �we have to
modify it a bit if we want to include the starting node too�� In the case of
the second example� we want to make the stopping time N dependent on the
history� we only want to stop after we have seen all nodes of the graph G�
but also want to maintain that the walk backward from the last node could
be considered a random walk� Such a rule can be devised with some work
�we omit its details�� In what follows� we give some general considerations
about this problem�

Of course� one has to be careful and avoid trivial rules like generating
a node v from the stationary distribution� and then stopping when we �rst
visit v� I don	t know of any clean�cut condition to rule out such trivial
solutions� but one should aim at rules that don	t use global computations�
in particular� don	t make use of an a priori knowledge of the stationary
distribution�

Stopping rules exist for quite general Markov chains� Asmussen� Glynn
and Thorisson ��� describe a randomized algorithm that generates an ele�
ment from the stationary distribution of a �nite irreducible Markov chain�
which needs only the number of states and a �black box� that accepts a state
as an input and then simulates a step from this state� Lov�asz and Winkler
���� have found a randomized stopping rule that generates an element from
the stationary distribution of any irreducible Markov chain� and only needs
to know the number of states� This rule can be made deterministic under
the assumption that the chain is aperiodic�
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To indicate the "avor of the result� let us describe the case when the
Markov chain has two states� The general case follows by a �not quite
trivial� recursive construction �similarly as in the work of Asmussen� Glynn
and Thorisson �����

So let
v�� v�� v�� � � � �����

be an irreducible aperiodic Markov chain on states fu� vg� Irreducible means
that the transition probabilities puv � pvu are positive� aperiodocity means
that at least one of puu and pvv is also positive� It is easy to check that the
stationary distribution is given by

��u� �
pvu

puv � pvu
� ��v� �

puv
puv � pvu

�

The following randomized stopping rule generates a random element from
�� without knowing any value pij or ��i�� only looking at the sequence ������

Rule �� Flip a coin� If the result is head� let i � � else� let i be the �rst
index for which vi 
� v�� If vi�� 
� vi then output vi��� else� discard the �rst
i� � elements and repeat�

If you don	t like that we use coin "ipping� you can use the Markov chain
itself to simulate it� making the rule entirely deterministic�

Rule �� Wait for the �rst pair i � j with the following properties	 �i�
vj � vi� �ii� vj�� 
� vi��� �iii� vj�� 
� vj��� and moreover� �iv� the state vi
occurs an even number of times before vi and �v� not at all between vi and
vj � Output vj���

If this sounds mysterious� note that for each of the �rst� second� etc�
occurence of a pair of indices with �i�� �ii�� �iv� and �v�� vj�� can be either
of the states with probability ����

The stopping rule sketched above takes a lot of time� we don	t even know
how to make the expected number of steps of the random walk polynomial
in the maximum access time� let alone comparable with the mixing time
�that we know may be logarithmic in n�� On the other hand� if we allow
global computation� we can get a stopping rule which needs� on the average�
at most twice as many steps as the mixing time � � We follow the random
walk for � steps� then �"ip a biased coin�� with probability ��v����P��v���
we stop� with probability �� ��v����P��v��� we forget about the past and
start from v� a random walk of length � etc� It is easy to see that the
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probability that we stop at v after k rounds is ��k��v�� which adds up to
��v�� Also� the expected number of steps is �� �

A threshold rule is a �relatively� simple kind of stopping rule� It is
speci�ed by a function t � V � R�� depending on the staring point v�� and
works as follows�

if t�vk� � k� then stop�

if t�vk� � k � �� go on�

if k � t�vk� � k�� then �"ip a biased coin� and move with probability
t�vk�� k but stop with probability k � �� t�vk��

Lov�asz and Winkler ���� have shown that there is a function t that gives
a threshold rule that is optimal among all stopping rules in a very strong
sense� it minimizes the expected number of steps among all randomized
stopping rules �for a �xed starting node�� It also minimizes the expected
number of times any given node is visited� Every threshold rule is of course
�nite� in the sense that there is a �nite time T such that it is guaranteed
to stop within T steps �in fact� T � maxi t�i��� The optimal threshold rule
minimizes this bound among all �nite rules�

The expected number of steps for the optimal threshold rule� starting
at node v� is

�� � max
u

H�u� v��
X
u

��u�H�u� v��

It follows from the description of the stopping rule using the mixing time
that

�� � ���

Since the de�nition of the mixing time � has an arbitrarily chosen constant
��� in it� while the de�nition of �� is �canonical�� it should be more natural
to call the quantity �� the mixing time�

Since this optimal stopping rule has many nice properties� it would be
good to have an e�cient implementation� The threshold function is polyno�
mially computable� but this is not good enough since we want to apply these
rules to exponentially large graphs� However� one can describe simple� easily
implementable stopping rules with comparable expected time that achieve
approximate mixing on the exponentially large graphs of interest discussed
above�
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