Ph.D. course on Network Dynamics Homework 1

To be discussed on Tuesday, October 8, 2013

Exercise 1. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be the complete graph with *n* nodes, and *P* the stochastic matrix associated to the standard random walk on \mathcal{G} . Determine the spectral gap of *P* (i.e., $1 - \lambda_2$, where λ_2 is the second largest eigenvalue of *P*).

Exercise 2. Prove that all the entries of the invariant probability distribution π of an irreducible stochastic matrix P are strictly positive. (hint: recall the argument used in class to prove uniqueness)

Exercise 3. Consider the stochastic matrix

	$\begin{bmatrix} 1/3 \\ 0 \\ 0 \end{bmatrix}$	2/3	0	0	0]	
	0	1/3	2/3	0	0	
P =	0	0	1/3	2/3	0	
	0	0	0	1/3	2/3	
	2/3	0	0	0	1/3	

.

Find its invariant probability distribution and its spectrum. Is P reversible? (hint: to compute eigenvectors, use the fact that an orthonormal basis of eigenvectors is $\{v^{(k)}: 0 \leq k \leq 4\}$ where $v_j^{(k)} = \frac{1}{\sqrt{5}}e^{i2\pi kj/5}$ for $1 \leq j \leq 5$, where i is the imaginary unit.)

Exercise 4 (Birth and death chain). Consider a Markov chain over $\mathcal{V} = \{0, 1, \ldots, n\}$ with $P_{ij} = 0$ for all |i - j| > 1. Assume that $P_{ij} > 0$ whenever |i - j| = 1 (which makes P irreducible). Find the invariant probability distribution π and prove that P is reversible. (hint: do both things at once, using reversibility to determine π_{k+1}/π_k , $k = 0, 1, \ldots, n - 1$.)

Exercise 5 (Lazy random walk on the hypercube). The hypercube of dimension $k \ge 1$ is the graph with node set $\mathcal{V} = \{0,1\}^k$ and $\mathcal{E} := \{\{u,v\} :$ $||u-v|| = 1\}$. Let P be the stochastic matrix associated to the lazy random walk on \mathcal{G} . Determine an upper bound on the spectral gap $1 - \lambda_2$ using its variational characterization (hint: take $\mathcal{S} = \{v \in \{0,1\}^k : v_1 = 0\}$ and f equal to 1 on \mathcal{S} and to -1 on $\mathcal{V} \setminus \mathcal{S}$)

Exercise 6 (Lazy random walk on the cycle). The cycle of size n is the graph $(\mathcal{V}, \mathcal{E})$ with $\mathcal{V} = \{0, \ldots, n-1\}$ and $\mathcal{E} := \{\{u, v\} : |u - v| = 1\}$ where the difference is taken modulo n (so that 0 and n - 1 are linked to each other). Use Cheeger's inequality to get a lower bound on the spectral gap.