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Lecture 7

• RS and H∞ Optimization of Coprime
Factors.

• H∞ Loop Shaping Procedure.

• Justification of H∞ Loop Shaping.

Robust Stabilization of Coprime
Factors

Left coprime factor uncertainty model:

P∆ = (M̃ + ∆̃M)
−1(Ñ + ∆̃N).

By Small Gain Theorem:

RS for q[∆̃N ∆M ]q∞ ≤ ǫ iff
∥
∥
∥
∥




K

I



 (I + PK )−1M̃−1

∥
∥
∥
∥
∞

<
1

ǫ

.

This is H∞ optimization.

In the standard lower LFT form



K

I



 (I + PK )−1M̃−1 = F l(G, K )

where

G =





0 I

M̃−1 −P

M̃−1 −P



 .

State Space Formulas

Consider a state space representation of
the strictly proper plant

P =

(
A B

C 0

)

.

It is easy to verify that

[Ñ M̃ ] =

(
A+ LC B L

C 0 I

)

,

where A+ LC is stable, gives a left coprime
factorization. Then

G =







A −L B



0

C








0

I








I

0





C I 0






.

Note: D11 ,= 0. Hence

1

ǫopt

= γ opt > qIq = 1 \ ǫopt < 1.

H∞ optimization of Coprime
Factors

Apply H∞ optimization result to G
([Zhou,Th. 14.7]). Two Hamiltonian matrices
are

H∞ =





A− 1
γ 2−1
LC 1

γ 2−1
LL∗ − BB∗

− γ 2

γ 2−1
C∗C −(A− 1

γ 2−1
LC)∗



 ,

J∞ =




(A+ LC)∗ −C∗C

0 −(A+ LC)



 .

Note that Y∞ = 0. Thus the result becomes

Theorem: Let D = 0. Then there exists a
stabilizing controller K such that

qF l(G, K )q∞ < γ

if and only if γ > 1, H∞ ∈ dom(Ric) and
X∞ = Ric(H∞) ≥ 0.

Remark: The result depends on the choice
of L, i.e. choice of coprime factors.
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Normalized Coprime Factors

Let choose L such that M̃ and Ñ become
the normalized left coprime factors.

Let Y be the stabilizing solution to

AY + YA∗ − YC∗CY + BB∗ = 0.

The matrix A − YC∗C is stable, so we can
put

L = −YC∗.

Lemma: With the choice L = −YC∗ the left
coprime factors become normalized.

Proof: Denote A (s) = (sI − A + YC∗C)−1

and calculate


 Ñ M̃








Ñ∗

M̃∗



 = I − CAYC∗ − CYA ∗C∗+

+ CA (B∗B+YC∗CY)A ∗C∗ =

= I + CA (B∗B+YC∗CY−Y(A ∗)−1−A−1Y)A ∗C∗ =

= I + CA (B∗B−YC∗CY+AY+YA∗

︸ ︷︷ ︸

=0

)A ∗C∗ = I.

H∞ Optimization of Normalized
Coprime Factors

Theorem: Let D = 0 and L = −YC∗ where
Y ≥ 0 is the stabilizing solution to

AY + YA∗ − YC∗CY + BB∗ = 0.

Then P = M̃−1 Ñ is a normalized left
coprime factorization and

inf
K−stab

∥
∥
∥
∥




K

I



 (I + PK )−1M̃−1

∥
∥
∥
∥
∞

=

=
1

√

1− λmax(YQ)
=
(
1− qÑ M̃q2H

)−1/2
= γ opt

where

Q(A− YC∗C) + (A− YC∗C)∗Q + C∗C = 0.

Moreover, a controller achieving γ > γ opt is

K (s) =

(

A− BB∗X∞ − YC∗C −YC∗

−B∗X∞ 0

)

,

X∞ =
γ 2

γ 2 − 1
Q

(

I −
γ 2

γ 2 − 1
YQ

)−1

.

Proof: Denote

Hq =




A− YC∗C 0

−C∗C −(A− YC∗C)∗



 ,

T =





I − γ 2

γ 2−1
Y

0 γ 2

γ 2−1
I



 .

It is straightforward to see that

H∞ = THqT
−1.

Since Q = Ric(Hq) we have the stable
invariant subspace for H∞ as

T




I

Q



 =





I − γ 2

γ 2−1
YQ

γ 2

γ 2−1Q



 .

Finally ∃X∞ ≥ 0 iff

I−
γ 2

γ 2 − 1
YQ > 0 \ γ 2 >

1

1− λmax(YQ)
.

Note that Y and Q are controllability and
observability Gramians for [Ñ M̃ ]. Hence
λmax(YQ) is the square of the Hankel norm
of it.

Some related H∞ problem

Since M̃ , Ñ are the normalized lcf we have


 M̃ Ñ







 M̃ Ñ




∗

= I.

Therefore
∥
∥
∥
∥




K

I



 (I + PK )−1M̃−1

∥
∥
∥
∥
=

=

∥
∥
∥
∥




K

I



 (I + PK )−1M̃−1


 M̃ Ñ




∥
∥
∥
∥
=

=

∥
∥
∥
∥




K

I



 (I + PK )−1


 I P




∥
∥
∥
∥
.

Does not depend on factorization.

Corollary:

inf
K−stab

∥
∥
∥
∥




K

I



 (I + PK )−1


 I P





∥
∥
∥
∥
∞

=

=
1

√

1− λmax(YQ)
=
(
1− qÑ M̃q2H

)−1/2
= γ opt.
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Right Coprime Factors

What if we have normalized rcf P = NM−1?

Theorem:
∥
∥
∥
∥




I

K



 (I + PK )−1


 I P




∥
∥
∥
∥
=

=

∥
∥
∥
∥




I

P



 (I + KP)−1


 I K





∥
∥
∥
∥
.

Corollary: Let P = NM−1 = M̃−1 Ñ be the
normalized rcf and lcf, respectively. Then

∥
∥
∥
∥




K

I



 (I + PK )−1M̃−1

∥
∥
∥
∥
∞

=

=
∥
∥
∥M−1(I + KP)−1



 I K




∥
∥
∥
∞
.

Conclusion: It does not matter what kind of
factorization we have. One can work with
either.

Stability Margin

Introduce a quantity bP,K

bP,K =







(∥
∥
∥
∥




I

K



 (I + PK )−1


 I P




∥
∥
∥
∥
∞

)−1

if K stabilizes P,

0 otherwise

and
bopt = sup

K

bP,K .

Then bP,K = bK ,P and

bopt =
√

1− λmax(YQ) =
√

1− qÑ M̃q2H .

It holds 0 ≤ bopt ≤ 1. The larger bopt
the more robustly stable the closed loop
system.

This quantity is related to the classical
gain and phase margins. Thus it can be
considered as a general stability margin
(Vinnicombe, 1993).

Relation to Gain and Phase
Margins

Theorem: Let P be a SISO plant and K be
a stabilizing controller. Then

gain margin ≥
1+ bP,K
1− bP,K

,

phase margin ≥ 2 arcsin(bP,K ).

Proof: For SISO system at every ω

bP,K =
1

q . . .q∞
≤

1

q . . .q
=
p1+ P( jω )K ( jω )p
∥
∥
∥
∥




1

K







1 P





∥
∥
∥
∥

=

=
p1+ P( jω )K ( jω )p

∥
∥
∥
∥




1

K





∥
∥
∥
∥

∥
∥
∥



 1 P




∥
∥
∥

=

=
p1+ P( jω )K ( jω )p

√

1+ pP( jω )p2
√

1+ pK ( jω )p2
.

So at frequencies where k := −PK ∈ R+

we have

bP,K ≤
p1− kp

√

(1+ pPp2)(1+ k2/pPp2)
≤

≤
p1− kp

√

minP{(1+ pPp2)(1+ k2/pPp2)}
=
p1− kp

p1+ kp

from which the gain margin result follows.

Similarly at frequencies where PK = −eθ

bP,K ≤
p1− eθ p

√

(1+ pPp2)(1+ 1/pPp2)
≤

≤
p1− eθ p

√

minP{(1+ pPp2)(1+ 1/pPp2)}
=

=
2p sin(θ/2)p

2

which implies the phase margin result.
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Loop-Shaping Design

Recall from Lecture 2 that a good perfor-
mance controller design requires

• in low frequency region:

σ (PK ) >> 1, σ (KP) >> 1, σ (K ) >> 1.

• in high frequency region:

σ (PK ) << 1, σ (KP) << 1, σ (K ) ≤ M

where M is not too large.

Conclusion: Good performance depends
strongly on the open loop shape.

H∞ loop shaping design procedure was
suggested by Glover and McFarlane, 1990.
The idea is to use pre- and postcompen-
sators which give a desired open loop
shape.

Loop Shaping Procedure

P

K

W1

6

-

?

�

W2

1) Choose W1 and W2 and absorb them into
the nominal plant P to get the shaped plant
Ps = W2PW1.

2) Calculate bopt(Ps) =
√

1− qÑs M̃sq2H . If
it is small then return to Step 1 and adjust
weights.
3) Select ǫ < bopt(Ps) and design the H∞
controller K∞ such that

∥
∥
∥
∥




I

K∞



 (I + PsK∞)
−1M̃−1

s

∥
∥
∥
∥
∞

< ǫ
−1.

4) The final controller is K = W1K∞W2.

Remarks:

• In contrast to the classical loop shaping
design we do not treat explicitly closed
loop stability, phase and gain margins.
Thus the procedure is simple.

• Observe that
∥
∥
∥
∥




I

K∞



 (I + PsK∞)
−1M̃−1

s

∥
∥
∥
∥
∞

=

=

∥
∥
∥
∥




W2

W−1
1 K



 (I + PK )−1


W−1
2 PW1





∥
∥
∥
∥
∞

.

So it has an interpretation of the
standard H∞ optimization problem with
weights.

• BUT!!! The open loop under investi-
gation on Step 2 is W2PW1K∞ and
K∞W2PW1 whereas the actual open
loop is given by W1K∞W2P and
PW1K∞W2. This is not really what we
has shaped!

Thus the method needs validation.

Justification of H∞ Loop Shaping

We show that the degradation in the loop
shape caused by K∞ is limited.

Consider low-frequency region first.

σ (PK ) = σ (W−1
2 PsK∞W2) ≥

σ (Ps)σ (K∞)

κ (W2)
,

σ (KP) = σ (W1K∞PsW
−1
1 ) ≥

σ (Ps)σ (K∞)

κ (W1)

where κ denotes conditional number.

Thus small σ (K∞) might cause problem
even if Ps is large. Can this happen?

Theorem: Any K∞ such that bPs,K∞ ≥ 1/γ
also satisfies

σ (K∞) ≥
σ (Ps) −

√

γ 2 − 1
√

γ 2 − 1σ (Ps) + 1
if σ (Ps) >

√

γ 2 − 1.

Corollary: If σ (Ps) >>
√

γ 2 − 1 then

σ (K∞) ≥
1

√

γ 2 − 1
.
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Consider now high frequency region.

σ (PK ) = σ (W−1
2 PsK∞W2) ≤ σ (Ps)σ (K∞)κ (W2),

σ (KP) = σ (W1K∞PsW
−1
1 ) ≤ σ (Ps)σ (K∞)κ (W1).

Can σ (K∞) be large if σ (Ps) is small?

Theorem: Any K∞ such that bPs,K∞ ≥ 1/γ
also satisfies

σ (K∞) ≤

√

γ 2 − 1+σ (Ps)

1−
√

γ 2 − 1σ (Ps)
if σ (Ps) <

1
√

γ 2 − 1
.

Corollary: If σ (Ps) << 1/
√

γ 2 − 1 then

σ (K∞) ≤
√

γ 2 − 1.

One can get the idea of proof from SISO
relation

bP,K ≤
p1+ Ps( jω )K∞( jω )p

√

1+ pPs( jω )p2
√

1+ pK∞( jω )p2
.

Denote

σ i = σ (Wi), σ i = σ (Wi), κ i = κ (Wi).

Theorem: Let P be the nominal plant and
let K = W1K∞W2 be the controller designed
by loop shaping. Then if bPs,K∞ ≥ 1/γ then

σ (K (I + PK )−1) ≤ γ σ (M̃s)σ 1σ 2,

σ ((I + PK )−1) ≤ min{γ σ (M̃s)κ2, 1+γ σ (Ñs)κ2},

σ (K (I + PK )−1P) ≤ min{γ σ (Ñs)κ1, 1+γ σ (M̃s)κ1},

σ ((I + PK )−1P) ≤
γ σ (Ñs)

σ 1σ 2
,

σ ((I + KP)−1) ≤ min{1+γ σ (Ñs)κ1,γ σ (M̃s)κ1},

σ (P(I + KP)−1K ) ≤ min{1+γ σ (M̃s)κ2,γ σ (Ñs)κ2}

where

σ (Ñs) = σ (Ns) =

(

σ 2(Ps)

1+σ 2(Ps)

)1/2

,

σ (M̃s) = σ (Ms) =

(
1

1+σ 2(Ps)

)1/2

.

What have we learned today?

• H∞ optimization of normalized coprime
factors. Optimal value can be calculated
via Hankel norm of the factors.

• Left or right coprime factors - does not
matter.

• Stability margin bP,K . The larger the
better. Relation to gain and phase
margins.

• H∞ loop shaping via pre- and postcom-
pensations and optimization of bP,K .

• Relations PK , KP Q Ps, W.

Next lecture

• Gap Metric and ν -Gap Metric.

• Extended Loop Shaping.
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