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Lecture 7

e RS and H,, Optimization of Coprime
Factors.

e H_ Loop Shaping Procedure.
e Justification of H,, Loop Shaping.

Robust Stabilization of Coprime
Factors

Left coprime factor uncertainty model:
Py = (M +Ay) 7 (N + Ap).

By Small Gain Theorem:

RS for ||[[Ax Ax]lleo < € iff

1
< -.
€

H [ N ] (I+PK) "M

This is H,, optimization.

In the standard lower LFT form

[ X ] (I+PK)"'M = F(G,K)

where

State Space Formulas

Consider a state space representation of
the strictly proper plant

- (442).

It is easy to verify that

[NM]:<A+LC\B L)’
c |o 1

where A + LC is stable, gives a left coprime

factorization. Then

o= 10 (0

Note: Hence

— =Y > I][=1 %
opt

€opt <1.

H , optimization of Coprime
Factors
Apply H,, optimization result to G

([Zhou,Th. 14.7]). Two Hamiltonian matrices
are

Ho_ [A—yz—l_lLC 5 LL* — BB* ]
> —ricc —(A-ALe) )
(A+LC) —-cC'C
Joo = :
0 —(A+LC)

Note that Y., = 0. Thus the result becomes

Theorem: Let D = 0. Then there exists a
stabilizing controller K such that

|F1(G,K) ||l <¥

if and only if y > 1, H,, € dom(Ric) and
X, = Ric(H,) > 0.

Remark: The result depends on the choice
of L, i.e. choice of coprime factors.




Normalized Coprime Factors

Let choose L such that M and N become
the normalized left coprime factors.

Let Y be the stabilizing solution to

AY +YA*-YC'CY + BB* = 0.

The matrix A — YC*C is stable, so we can

put
L=-YC".

Lemma: With the choice L = —YC* the left
coprime factors become normalized.

Proof: Denote 4(s) = (sI — A+ YC*C)™!
and calculate

(v n) [Z] = [-CAYC* —CYA*C +

+ CA(B*B+YC*CY)A*C* =
= I+CA(B*B+YC'CY-Y(4")'-27'v)a*C* =
= I+ CA(B'B-YC*CY+AY+YA")A'C* =1.

=0

H, Optimization of Normalized
Coprime Factors

Theorem: Let D = 0 and L = —YC* where
Y > 0 is the stabilizing solution to
AY + YA*—YC*'CY + BB = 0.

Then P = M~'N is a normalized left
coprime factorization and

inf
K —stab
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1 N -1/2
= =(1—||N M|3 =7,
= 7..7Q) (1= %) Yot

where
QA-YC'O)+(A-YC'C)yQ+C*C=0.

Moreover, a controller achieving y > ¥op: IS

KGs) = (A—sz*;}—yc*c } —1;0* )

72 72 -
X, = y2_1Q<I—y2_1YQ> .

Proof: Denote

A-YC'C 0
H, = , -,
—C*'C  —(A-YC*C)*

T = [ ! _sz—lY]
0 51
It is straightforward to see that

H,=TH,T™

Since @ = Ric(H,) we have the stable
invariant subspace for H,, as

T[z] _ [I—nylYQ].
Q £:Q

Finally 3X ., > 0 iff

2
7

}/2_1YQ>0 & y?>

ol
1 - lmax(YQ) .

Note that Y and @ are controllability and
observability Gramians for [N M]. Hence
Amax(Y Q) is the square of the Hankel norm
of it.

Some related H,, problem

Since M, N are the normalized Icf we have

(# &) (m N]*=1.

Therefore

(i

_ ‘ [’f] (1+ PR (1 N]H:

- ‘ [II{] (1+PK)™ (1 P]H.

Does not depend on factorization.

(I+PK)'M~!

Corollary:

K p—
()@ (1 )] -
= ! = N ATN2 -1/2
= iowa - LTIV M) = Yot

inf
K —stab




Right Coprime Factors

What if we have normalized rcf P = NM~1?

Theorem:

H[ ]I+PK (I P]H:
H[ ]I+KP [1 K]H

Corollary: Let P = NM~! = M~'N be the
normalized rcf and Icf, respectively. Then

H[ ]I+PK a1

oo

HM (I+KP)™? [1 K] H

oo

Conclusion: It does not matter what kind of
factorization we have. One can work with
either.

Stability Margin

Introduce a quantity bp x

e ]

if K stabilizes P,
0 otherwise

and
bopt = sup bp,K.
K

Then bp,K = bK,p and

bopt = \/1 - lmax(YQ) = 1- ”N M”%I

It holds 0 < b,,; < 1. The larger b,y
the more robustly stable the closed loop
system.

This quantity is related to the classical
gain and phase margins. Thus it can be
considered as a general stability margin
(Vinnicombe, 1993).

Relation to Gain and Phase
Margins

Theorem: Let P be a SISO plant and K be
a stabilizing controller. Then

1+bpk
1-— bp,K ’
phase margin > 2arcsin(bpx).

gain margin >

Proof: For SISO system at every @

1 1 1+ P(jo)K (jo)|

H[ ) 7)

bpx = T

1+ Pjo)K(jo

L)l

|1+ Py )K(Jw)|
VI+[PGo)2/1+|K(Go)?

So at frequencies where k£ := —PK € R*
we have
b |1 — |
PR A IPRA+ RPE) -
|1 — k| |1 —k

Vminp{(1+[PP)(1+%/|PF)}  [1+Kl
from which the gain margin result follows.
Similarly at frequencies where PK = —e?

1€
V(A +[PPR)(1+1/|PP)
1€
Vminp{(1+[P]?)(1 +1/|P]?)}
2|sin(6/2)|
2

bpx

which implies the phase margin result.




Loop-Shaping Design

Recall from Lecture 2 that a good perfor-

mance controller design requires
e in low frequency region:

o(PK)>>1, o(KP)>>1,

in high frequency region:
06(PK)<<1, o(KP)<<1,

where M is not too large.

Conclusion: Good performance depends
strongly on the open loop shape.

H_, loop shaping design procedure was
suggested by Glover and McFarlane, 1990.
The idea is to use pre- and postcompen-
sators which give a desired open loop
shape.

o(K)>>1.

(K) < M}

Loop Shaping Procedure

A !
W, W,
I

1) Choose W; and W, and absorb them into
the nominal plant P to get the shaped plant
Ps == W2PW1.

2) Calculate by (P,) = \/1— |V, M| I
it is small then return to Step 1 and adjust
weights.

3) Select € < b,,:(Ps) and design the H,
controller K, such that

<e L

o0

1 —1xr-1
() oererm

4) The final controller is K = W1 K, Ws.

Remarks:

¢ In contrast to the classical loop shaping
design we do not treat explicitly closed
loop stability, phase and gain margins.
Thus the procedure is simple.

Observe that

1 N
[P

oo

- "[W?K] (I+PK)™! (WQ—1 PWl]H

So it has an interpretation of the
standard H,, optimization problem with
weights.

BUT!!! The open loop under investi-
gation on Step 2 is WoPW K, and
K. WyPW; whereas the actual open
loop is given by W; K, W,P and
PW.K . W,. This is not really what we
has shaped!

Thus the method needs validation.

[e¢]

Justification of H., Loop Shaping

We show that the degradation in the loop
shape caused by K, is limited.

Consider low-frequency region first.

_ 1 o(Ps)o(Kw)
o(PK) = o(WyP,K Wy) > PUANE

_ _ o(Ps)o(K)
o(KP) = o(WiK P,Wil) > (W)

where x denotes conditional number.

Thus small o(K,,) might cause problem
even if P, is large. Can this happen?

Theorem: Any K, such that bp g > 1/y
also satisfies

> o(Ps) — Vr72i—1
T Vr2—10(P,) +1

Corollary: If o(P;) >> /72 — 1 then

o(Ky) > 1

VRS

o(Ky)

it o(Ps) > /y? 1




Consider now high frequency region.
E(PK) = E(WZ_IPSKOOW2) S E(PS)E(KOO)K(W2),
G(KP) = G(WiKxPWi') <G (P,)T(Ke)x(Wh).

Can o(K,,) be large if 6 (Ps) is small?

Theorem: Any K, such that bp x> 1/y
also satisfies

VY2—14+06(P) . _ 1
1— /72— 16(P,) fo(P) <

Corollary: If 6(P;) << 1/4/y? —1 then

0(Ky) <+V7y2-—1

0(Kx) <

One can get the idea of proof from SISO
relation

b < IL+PUOK(O)
£ VI IPGo)Py T+ [Ka(o)P

NS

Denote

c;=0(W;), o,=0(W), & =x(W).

Theorem: Let P be the nominal plant and
let K = WKW, be the controller designed
by loop shaping. Then if bp x> 1/y then

G(K(I+PK)™") < y6(M,)51G2,

o((I+PK)™Y) < min{yc(M,)xz, 1+yS(N;)xa},
K(I+PK)™'P) < min{yc(N,)x1,1+y5(M,)x1},
| _ YG(Ns)
o((I+PK)'P) < 0.0,

((I+KP)™Y) < min{14+y5(N,)x1,y0(M;)x1},
G(P(I+ KP)'K) < min{l+yc(M,)xz,yo(N,)k2}
where

) 5 ( ) 1/2
G( S) = G(NS)=<1+O_ s)> ’
o _ 1 1/2
6( s) = G(MS):(]_+O'2(PS))

What have we learned today?

e H_, optimization of normalized coprime
factors. Optimal value can be calculated
via Hankel norm of the factors.

e Left or right coprime factors - does not
matter.

¢ Stability margin bp x. The larger the
better. Relation to gain and phase
margins.

e H_, loop shaping via pre- and postcom-
pensations and optimization of bp k.

e Relations PK, KP < P,, W.

Next lecture

e Gap Metric and v-Gap Metric.
e Extended Loop Shaping.




