Lecture 5

* LFT and Internal Stability.

» Structured Uncertainties.

» Structured Singular Value u.

* Some bounds on .

» Structured Robust Stability.

» Structured Robust Performance.
» 1 Synthesis via D — K iterations.

LFT and General Framework
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What is internal stability of (P, K)?
Is F.(M,A) well-posed?
Robustly stable?

LFT and Internal Stability

Consider the lower LFT interconnection of P and K where
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The closed loop system is
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Definition: The closed loop system (P, K) is called internally
stable if the transfer function from (w, e, e2) to (z,u, y) belongs
to RH,.

w 4

Theorem: K stabilizes P iff K stabilizes Pss.

Proof: See [Francis,p. 33]. The proof of a particular case can
be also found in [Zhou,p. 223].

Remark:

» For upper LFT Py, should be replaced by Ps;.

* The theorem reduces the internal stability of 4-block
system to that of 1-block one.

* Small Gain Theorem becomes obvious.
Theorem: Let M € RH,. Then the closed-loop system

(M,A) is well-posed and internally stable for all A € RH,, with
|4l < 1if and only if || M| < 1.

Proof: By above, A stabilizes M iff A stabilizes M;;. By the
standard Small Gain Theorem, this happens iff | M1/ < 1.




Pulling out Uncertainties
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Structured Uncertainty

The new pulled out uncertainty has a diagonal structure
composed of primitive uncertain blocks. Every primitive block
can be

» complex unstructured matrix uncertainty to represent
neglected dynamics.

» real parameter scalar uncertainty to represent uncertainty
in system coefficients.

Usually real uncertainty is much harder to deal with. One (con-
servative) way to treat it is to cover it with complex uncertainty.

Thus we shall assume that
A(s) = diag{01(s) I, ..., 0k ()L, D1(S), ..., AL(S)}
where J;, A, € RH,, and |0l < 1, ||Al]|co < 1.

Structured Singular Value

Recall the Small Gain Theorem which says that (I — MA)™! €
RH,, OA € BRH, iff | M| < 1.

Thus if there exist a frequency w and a complex matrix A such

that
det(I — M (jw)A) =0

then ||A| is an upper bound on the stability margin | M|}
Given a matrix M € CP*? introduce
A min = Inf{||A]| : det(l — MA) =0, A € CT*P}.

We have the relation

M| = Opex(M) = .
1M = Gae(M) = -~

Now consider the structured uncertainty set

D = {d|ag [511,«1 ..... 5KIrK-A1 ..... AL] : oecC, A€ lexml}

Definition: Given a matrix M € C™*" the structured singular

value up(M) is defined as

1
“min{||A|| : det(I — MA)=0, AeD}’

If det(I — M A) # 0 for all A € D then pup(M) := 0.

Hp(M) =

Elementary property:
e D={0] : 0€C} = (M) =p(M).
+ D=C"" = up(M) = | M]|.
* Ingenera, C CDCC"™ so p(M) < up(M) < ||M]|.




How good are the bounds?
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(1) For M = [0 ’g] with 8 > 0 we have

Let

p(M) =0, |M| =8 #p(M)=0.

-1/2 1/2

-1/2 1/2
p(M) =0, |M]|=1.

Since det(I — MA) =1+ (61 — d2)/2 we get up(M) = 1.

Thus both bounds are bad unless p ~ &.

(2) For M = [ ] we have

Invariant transformation

Let us try to find a transformation which does not affect tp(M)
but changes p and o.

Define two sets

U = {UeD : UU"=1},
D = {diag[D1 ..... DK.dIIml ..... dL—IImL,pImL] :
Dy, € C**"k Dy, = DE> 0,d; € R, d; > 0}.

Note that forany A€ D, U € U and D € D it holds
e UYe U, UA e D, AU € D (property of the set D).
* |UA] =AUl = ||A]| (since UU"= I).
» DA = AD (property of the set D).

Theorem

Forall U € Uand D € D

1) (M) = pup(UM) = pp(MU ).
2) pip(M) = pip(DM D).

Proof: 1) Since for each U € U

det(I —-MA)=0 <& det(I-MUUD)=0
AeD & UPAED

we get pp(M) = pp(MU).
2) Forall D € D
det(I —MA) = det(I—MD 'AD)=det(I - DMD™'A)

since A and D commute. Therefore up(M) = up(DMD™1).

Improving the bounds

Using Theorem we can tighten the bounds as

sup p(UM) < up(M) < inf |DMD™|.
Uel DeD

Theorem:

sup p(UM) = up(M).
veu

Theorem: If 2K + L < 3 then
_ 3 -1
Un(M) = 52£||DMD I




Remarks:

* In general the quantity po(U M) has many local maxima
and the local search cannot guarantee to obtain u(M).

» Computationally there is a slightly different formulation of
the lower bound by Packard and Doyle which gives rise to
a power algorithm. It usually works well but has no prove
of convergence.

» The upper bound can be computed by convex optimiza-
tion, but it is not always equal to u(M) if 2K + L > 3.

* It is the upper bound that is the cornerstone of y synthe-
sis, since it gives a sufficient condition for robust perfor-
mance.

Structured Robust Stability
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Introduce the set

T (D) = {A € RH,,

: A(s) € D in RHP}.
We have the following structured Small Gain Theorem.

Theorem: Let M € RH,,. The closed-loop system (M,A) is
well-posed and internally stable for all A € 7 (D) with ||All« < 1
if and only if

sup Uup(M (jw)) < 1.
wWER

Proof : The robust stability condition is

(I-MA)' €RH,, 0A€ T (D), |4« < 1.

“«" |t is sufficient to show that

sup 4p(M(s)) = sup up(M (jw)).
Res>0 wER

Obviously >. The opposite inequality follows from the fact that

zeros of det(I — M A) move continuously with respect to A

and det(I — MaA) has no zeros in RHP if | MA|. < 1/a

(homotopy argument).

“=" If supyer Up(M(jw)) > 1 then by definition of u there
exist wy € R U {400} and A, with ||Ao|| < 1 such that the
matrix I — M (jw, )4 is singular. Next, one can apply the same
interpolation argument as in the Small Gain Theorem.

Remark: Unlikely the unstructured Small Gain Theorem the
robust stability for all A € 7 (D) with ||Al| < 1 does not imply
that

sup p(M (jw)) < 1.

weR
It might be = 1.

See example in [Zhou,p. 201].




Performance for Constant LFT

Mll M12

Let M = [
M21 M22 - - - -
D; and D, are two defined structures which are compatible in

size with My; and My, correspondingly.

] be a complex matrix and suppose that

Introduce a third structure as
D; O
D= [ . ] |

Theorem:

sup p,(Fu.(M,0)) <1

8;€Dy
1A ]<1

1) pp(M) <1 < |pp,(Mu) <1,

Up,(M11) <1,

sup fip,(Fu(M,01)) <1

Aj€Dy
lag <1

2) pp(M)<1 <&

=

“<" Let ||A;|| < 1. By Schur complement

Proof: Prove only 1).

I—MuAr —Mipehs ] _
—Mo1Ar I — Maal
= det(I — M11A1) det(I — fu(M,Al)Ag) # 0.

det(I — MA) =det [

“=" Basically the same identity plus (from definition of )
pp(M) > max{p, (M11), Up,(Mo2)}

Structured Robust Performance
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Let [pq2, g2] = size(Msg). Define an augmented block structure

D 0
DP: [0 CIszpz] '

Theorem: For all A € 7 (D) with ||A]|. < 1/ the closed loop
is well posed, internally stable and ||¥,(M,A)|. < B if and
only if

sup ip, (M (jw)) < B

wER

U Synthesisvia D — K lterations
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The problem is to solve
Jin [F:(P, K)||

Approximation: D — K iterations for the upper bound

min  inf ||[DF(P,K)D Y|«
Hoc

K—stab D, D-1c

under the condition D (s)A(s) = A(s)D(s).




Remarks:

» Step 1 is the standard H,, optimization.

» Step 2 can be reduced to a convex optimization.
» No global convergence is guaranteed.

* Works sometimes in practice.

What have we learned today?

LFT gives us a general framework.
Internal stability of LFT
Pulling out uncertainties gives a diagonal structure

Structured singular value u is very natural for robust
stability but very hard to calculate exactly.

Conservative bounds of u are available.
Invariant transformations as a way to reduce conservatism.
Small u-Gain Theorem is very similar to the standard one.

Structured robust performance equivalent to pure robust
stability with augmented uncertainty.

Heuristic D — K iterations as approach to y synthesis.

Next lecture

» Algebraic Riccati Equations.
» Standard H,, Control Problem.
» State Space Solution.




