
Robust Control, 6p

• Introduction. Spaces, operators, norms.

• Internal stability, performance measures

• Fundamental limitations

• Models of system uncertainty

• Structured uncertainty and µ-synthesis

• H2 and H∞ optimal control

• Gap metrics and H∞ loop shaping

Lecture 1

• Historical remarks

• The class of linear systems as a linear space

• Norm and inner product as a way to measure distance

• Banach and Hilbert spaces: L∞. and L2

• The Hardy spaces: H2 and H∞

• Matrix computations

Introduction

• Without uncertainty there is no need for feedback

• A brief history

– Black, Bode and Nyquist
– Bode’s ideal loop transfer function
– Horowitz and QFT
– State space theory
– H ∞, Zames, Glover, Doyle, ...

• How to cope with uncertainty

– Live with it: Robust control!
– Reduce it: Adaptive control!

The Feedback Amplifier

The repeater problem

Blacks invention 1927

Nyquist 1932

Blacks paper 1934

Bode 1940

Bodes book 1945
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Early theoretical insights

• Nyquist 1932

• Bode 1940

• Important ideas

Nyquist curve
Bode diagram
Bodes relations
Bodes integrals
Bodes ideal loop transfer function

• Horowitz 1963 +

Templates
Qualitative Feedback Theory (QFT)

Bodes Ideal Loop Transfer Function

The repeater problem. Large gain vari-
ations in tube amplifiers What should a
transfer function look like to be indepen-
dent of gain?

L(s) =
( s

ω nc

)n

Phase margin invariant with loop gain
n = −1.5 gives ϕm = 45○

Horowitz extended Bodes ideas to deal with arbitrary plant
variations not just gain variations in the QFT method.

State Space Theory

• Many useful concepts

State
Observability, reachability
Kalman filters and separation

• Uncertainty as parameter errors or additive disturbances

• Difficult to deal with unmodeled dynamics

• Multi-variable systems

Singular values are what matters for robustness!

• H∞ theory

Brought uncertainty into the picture again!
Structured uncertainty and µ

What is this course about?

We design a controller C for a mathematical model M and
want the corresponding real process P to behave well.

Problems:

• P �= M

• Even if P = M there is controller implementation errors

Robustness philosophy: The controller C is robust if

P � M

Cr � C
; (P,Cr) � (M ,C).

• What does it mean “�”? (This lecture)

• How to check this? — Analysis.

• How to find the controller? — Synthesis
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Linear (or vector) space

Dream: To use intuition from

�

n in more general situations

Consider a set X = {x} and

�

=

�

or

�

with two operations
+ : X � X → X and ⋅ :

�

� X → X . Then X is a linear space if

1. x1 + x2 = x2 + x1.

2. (x1 + x2) + x3 = x1 + (x2 + x3).

3. ∃0 ∈ X such that x + 0 = x ∀x ∈ X .

4. ∀x ∈ X ∃(−x) ∈ X such that x + (−x) = 0.

5. (λ1 + λ2)x = λ1x + λ2x.
6. λ(x1 + x2) = λx1 + λx2.
7. λ1(λ2x) = (λ1λ2)x.
8. 1x = x.

The space of linear systems

Denote by L the set of all linear systems. It becomes the linear
space with the following natural definition of + and ⋅

y1 = G1u,
y2 = G2u

; (G1 + G2)u = y1 + y2,

y = Gu ; (λG)u = λ y.

Only algebraic linearity is rather poor generalization of

�

n.
What about the distance between two linear systems? What
does it mean

G1 � G2?

Normed linear space

A linear space X is called normed if every vector x ∈ X has
an associated real number ixi — its “length”, called the norm
of the vector x, — with the following properties

1. ixi ≥ 0 and ixi = 0 < x = 0.

2. iλxi = hλ hixi.

3. ix1 + x2i ≤ ix1i + ix2i.

Now we can say that G1 � G2 if iG2 − G1i is small.

How should one equip the space L with a norm? A good chice
should support understanding, but also allow for computational
analysis and synthesis.

Induced norm

A linear system can be considered as an operator from input
U to output Y. If U and Y are normed linear spaces then the
following system norm is said to be induced by the signal
norms on U and Y

iGi = sup
iuiU≤1

iGuiY .

Geometrical sense: iGi is the maximal possible gain of the
unit input.
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Singular value plot for 2� 2 system

Singular Values
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What does the plot tell you?

Banach and Hilbert spaces

The space

�

n also has an inner product, that is a functional 〈, 〉
with the properties

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.

2. 〈x1, x2〉 = 〈x2, x1〉.
3. 〈x1 + x2, x3〉 = 〈x1, x3〉 + 〈x2, x3〉.
4. 〈λx1, x2〉 = λ〈x1, x2〉.

If there is an inner product on X then the norm can be defined
as

ixi =
√

〈x, x〉. (1)

A complete normed linear space is called Banach space. A
Banach space with inner product and the norm (1) is called
Hilbert space.

Remarks:

• Completeness means that there is no holes in the space.
It is very important property. For example, people deal with
real numbers rather than with rational numbers because
the latter is not the complete space.

• Existence of the inner product gives an additional nice
property of the corresponding norm which makes the
space be very similar to

�

n. This property is

ix1 + x2i
2 + ix1 − x2i

2 = 2(ix1i
2 + ix2i

2).

It simplifies drastically the optimization in Hilbert spaces.

Examples: L2 and L∞ spaces.

Example 1: L2 space. Consider the linear space of all matrix-
valued functions on

�

L2(

�

) = {F :

∫

� tr[F(t)∗F(t)] dt < +∞}.

This is the Hilbert space with the inner product

〈 f , n〉2 =

∫

� tr[ f (t)
∗n(t)] dt

Example 2: L∞ space. Consider the linear space of all
matrix-valued functions on

�

L∞(

�

) = {F : ess supσmax[F(t)] < +∞}.

This is a Banach space with iFi∞ = ess supt∈ � σmax[F(t)]
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Choice of U and Y as L2.

One of the simplest choices of the input and output spaces is
L2(

�

) mainly because it is the Hilbert space. In this case the
linear system G is a linear operator on L2

G : L2(

�

) → L2(

�

)

and the norm of the linear system is L2-induced norm

iGi = sup
iui2≤1

iGui2 = iG( jω )i∞

where G(s) is the transfer function of LTI system (Parseval’s
relation + Theorem 4.3 in [Zhou+Doyle]).

Remark: Choosing the spectral norm in U and the power norm
in Y one can get

iGi = iG( jω )i2

(see [Zhou+Doyle+Glover] for details).

Stability and Hardy spaces.

Stability is a very important issue in system analysis. There-
fore, it is also important to capture stability in the relation �. In
other words, if G1 is stable and G2 is not then iG1 − G2i must
be large.

This motivates the introduction of Hardy spaces:

Define for p = 2 and p = ∞

Hp = {F ∈ Lp( j

�

) : F is analytic in the right half plane}

iFiHp = sup
σ >0

iF(σ + jω)iLp .

Thus if G1 is stable and iG1 − G2iHp is finite then G2 is also
stable.

Are these norms easy to compute?

If G is stable then

iGip := iG( jω )iLp = iGiHp .

L2/H2 norm:

For rational G, the norm iGi2 can be finite only if G is strictly
proper

Theorem 1: Let G(s) = C(sI − A)−1B and A is stable matrix.
Then

iGi22 = tr(B∗QB) = tr(CPC∗)

where P is controllability and Q is observability Gramian

AP + PA∗ + BB∗ = 0,
A∗Q + QA + C∗C = 0.

The formula for iGi2

The transfer function G(s) is the Laplace transform of the
impulse response

n(t) =

{

CeAtB , t ≥ 0

0, t < 0

Hence by Parseval’s formula

iGi22 =
1

2π

∫ ∞

−∞

trace{G(iω)∗G(iω)}dω =

∫ ∞

0

trace{n(t)∗n(t)}dt

=

∫ ∞

0

trace{B∗eA
∗tC∗CeAtB}dt = tr(B∗QB)

since

Q =

∫ ∞

0

eA
∗tC∗CeAtdt
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L∞/H∞ norm:

For real-rational plants iGi∞ < +∞ only if G(s) is proper.

The computation is more complicated than for H2 norm and
requires a search.

Theorem 2: Let G(s) = C(sI − A)−1B + D ∈ L∞. Then
iGi∞ < γ if and only if

1. σmax(D) < γ ,

2. H has no eigenvalues on the imaginary axis

where R = γ 2 I − D∗D and

H =




A+BR−1D∗C BR−1B∗

−C∗(I+DR−1D∗)C −(A+BR−1D∗C)∗





iGi∞ when G(s) = C(sI − A)−1B + D

Let γ 2 be an eigenvalue of G(iω )G(iω )∗ with eigenvector u:

[C(iω I − A)−1B + D]∗u = γ v [C(iω I − A)−1B + D]v = γ u

Define

p = (iω I − A)−1Bu q= (−iω I − A∗)−1C∗v

Then
[
u

v

]

=

[
−D γ I
γ I −D∗

]−1 [ C 0

0 B∗

] [
p

q

]

iω
[
p

q

]

=

{[
A 0

0 −A∗

]

+

[
B 0

−C∗ 0

] [
−D γ I
γ I −D∗

]−1 [ C 0

0 B∗

]}

︸ ︷︷ ︸

H

[
p

q

]

Hence H must have a purely imaginary eigenvalue.

What have we learned today?

• Robustness as a property of the closed-loop system to
have similar behavior for all plants “close” to the nominal
one.

• Normed linear space as the main tool to handle “close-far”
notion. G1 is “close” to G2 1 iG1 − G2i is small.

• iGi depends on norms of input and output signal spaces.

• L2 and L∞ plus stability gives H2 and H∞. This is the
most important choices for iGi.

• They are also not very hard to compute — H2 easier, H∞

harder (needs an iteration).
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